Monday, Oct 29, 2018

NOTES

- Warm-UP
- Review Permutations \& Introduce Combinations (notes cont.)
- Intro to Pascal's Triangle \& Binomial Theorem
- Blind LUCK Quiz
- HW Practice

Warm-UP

1. How many different ways can you answer a 10 question, true/false quiz?
2. How many different ways can you answer a 10 question, multiplechoice quiz? (assuming there are 4 choices for each question)
3. What is the typical result of a binomial squared?

Warm-UP Answers

1) How many different ways can you answer a 10 question, true/false quiz?

There are $\mathbf{2}$ options for each question, so it's $2^{10}=1024$
2) How many different ways can you answer a 10 question, multiplechoice quiz? (assuming there are 4 choices for each)

There are 4 options for each question, so $4^{10}=1,048,576$
3) What is the typical result of a binomial squared?

A perfect square trinomial, except when...it's complex

$$
\begin{gathered}
(3-i)^{2}=(3-i)(3-i)=9-6 i+i^{2} \\
=9-6 i+-1 \\
\text { so }(3-i)^{2}=8-6 i
\end{gathered}
$$

... a perfect square, but not a trinomial

Thursday, Oct 25, 2018

BLIND Luck Quiz - ©
Please answer the following True/False questions about probability:

1. Q1
2. Q 2
3. Q 3
4. Q 4
5. Q 5
6. Q 6
7. Q 7
8. Q 8
9. Q 9
10. Q 10

Blind LUCK Quiz!
Answer True/ False

	\mathbf{T}	\mathbf{F}
Q1	\mathbf{T}	
Q2		\mathbf{F}
Q3	\mathbf{T}	
Q4	\mathbf{T}	
Q5		\mathbf{F}
Q6		\mathbf{F}
Q7	\mathbf{T}	
Q8	\mathbf{T}	
Q9	\mathbf{T}	
Q10		\mathbf{F}

What are the number of ways to answer a 10 question, true/false quiz? 1024

Review Permutations \& Introduce Combinations (notes continued)

Consider the following: How many ways can 3 students be chosen for a candy treat, from a group of 15?

A combination is a selection of objects or events in which the order does not matter.

In general you can find the number of combinations for an event by finding the number of permutations and then eliminate the selections that have the same objects, simply in a different order.

Notation for combinations:
${ }_{n} C_{r}$ represents the number of Combinations of \boldsymbol{n} things taken r at a time

So the number of ways you can select 3 students from a group of 15 would be:

$$
{ }_{n} C_{r}={ }_{15} C_{3}
$$

Note: our Quality Core cheat sheet uses ${ }_{k} C_{m}$ in place of ${ }_{n} C_{r}$

$$
\begin{aligned}
{ }_{n} C_{r} \rightarrow{ }_{15} C_{3} & =\frac{15 \cdot 14 \cdot 13}{3 \cdot 2 \cdot 1} \mathrm{or} \\
{ }_{15} C_{3} & =\frac{{ }_{15} P_{3}}{3!}
\end{aligned}
$$

If you go bowling and knock down 6 pins, how many combinations of pins can remain?

$$
\begin{aligned}
& { }_{n} C_{r} \rightarrow{ }_{10} C_{4}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} \text { or } \\
& { }_{10} C_{4}=\frac{{ }_{10} P_{4}}{4!}=\frac{10!}{6!\cdot 4!}
\end{aligned}
$$

Notation for combinations in general and how to calculate them:

$$
\begin{aligned}
& { }_{n} C_{r} \rightarrow=\frac{n!}{(n-r)!\cdot r!} \\
& e x: \quad{ }_{25} C_{5}=\frac{{ }_{25} P_{5}}{5!}=\frac{25!}{20!\cdot 5!}
\end{aligned}
$$

Name:

Patterns with Pascal's Triangle:

Binomial coefficients relate to \qquad in that you can predict the \qquad of any binomial expansion. For example, what is the product of $(x+2 y)^{6}$? Using the binomial expansion based on the binomial coefficients, this is simple. Look at \qquad of Pascal's triangle, which indicates the coefficients of each term, as well as the number of terms in the final product: 7 terms, w/ leading coeff: 1, 6, $15,20,15,6,1$

$$
(x+2 y)^{6}=1\left(x^{6} \cdot(2 y)^{0}\right)+6\left(x^{5} \cdot(2 y)^{1}\right)+15\left(x^{4} \cdot(2 y)^{2}\right)+20\left(x^{3} \cdot(2 y)^{3}\right)+\cdots
$$

$$
\therefore(x+2 y)^{6}=
$$

(write your solution!)
The pattern in each ROW corresponds to the number of \qquad that occur, or the number of ways to choose certain objects where order does not matter. The notation we use is ${ }_{8} C_{3}$ or $C\binom{8}{3}$ which means choosing ___ objects out of a group of \qquad .

Patterns with polynomial expansion:

Consider the coefficients

$(a+b)^{0}=$	1
$(a+b)^{1}=$	$a+b$
$(a+b)^{2}=$	$a^{2}+2 a b+b^{2}$
$(a+b)^{3}=$	$a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$(a+b)^{4}=$	$a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$
$(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$	

For any binomial to any power:
$(a+b)^{n}={ }_{n} C_{0} a^{n} b^{0}+{ }_{n} C_{1} a^{n-1} b^{1}+{ }_{n} C_{2} a^{n-2} b^{2}+\cdots+{ }_{n} C_{n} a^{0} b^{n}$
Example:
$(a+b)^{9}={ }_{9} C_{0} a^{9} b^{0}+{ }_{9} C_{1} a^{8} b^{1}+{ }_{9} C_{2} a^{7} b^{2} \cdots+{ }_{9} C_{8} a^{1} b^{8}+{ }_{9} C_{9} a^{0} b^{9}$
Binomial Formula

$$
(a+b)^{n}=\sum_{r=0}^{n}{ }_{n} C_{r} a^{n-r} b^{r}
$$

Binomial coefficients relate to Pascal's Triangle in that you can predict the product of any binomial expansion. For example, what is the product of $(x+2 y)^{6}$? Using the binomial expansion based on the binomial coefficients, this is simple. Look at ROW 6 of Pascal's triangle, which indicates the coefficients of each term, as well as the number of terms in the final product: 7 terms, $w /$ leading coeff: $1,6,15,20,15,6,1$

$$
(x+2 y)^{6}=1\left(x^{6} \cdot(2 y)^{0}\right)+6\left(x^{5} \cdot(2 y)^{1}\right)+15\left(x^{4} \cdot(2 y)^{2}\right)+20\left(x^{3} \cdot(2 y)^{3}\right)+\cdots
$$

$$
\therefore(x+2 y)^{6}=(\text { HERE is the solution!) }
$$

$$
x^{6}+12 x^{5} y+60 x^{4} y^{2}+160 x^{3} y^{3}+240 x^{2} y^{4}+192 x y^{5}+64 y^{6}
$$

The pattern in each ROW corresponds to the number of combinations that occur, or the number of ways to choose certain objects where order does not matter. The notation we use is ${ }_{8} C_{3}$ or $C\binom{8}{3}$ which means choosing three objects out of a group of eight.

Blind LUCK Quiz!

Answer True/ False

	\mathbf{T}	\mathbf{F}
Q1	\mathbf{T}	
Q2		\mathbf{F}
Q3	\mathbf{T}	
Q4	\mathbf{T}	
Q5		\mathbf{F}
Q6		\mathbf{F}
Q7	\mathbf{T}	
Q8	\mathbf{T}	
Q9	\mathbf{T}	
Q10		\mathbf{F}

Tree Tracking
True/ False Answer Paths

What are the number of ways to answer a 10 question, true/false quiz? \qquad
What are the number of way to get exactly \boldsymbol{x} questions correct? (use the table below)

0 Correct	1 Correct	2 Correct	3 Correct	4 Correct	5 Correct	6 Correct	7 Correct	8 Correct	9 Correct	10 Correct
1	10	45							10	1

What is the probability of getting:
a) zero correct? \qquad
b) one correct? \qquad
c) two correct? \qquad
d) three correct? \qquad
e) four correct? \qquad
f) five correct? \qquad
g) six correct? \qquad
h) seven correct? \qquad
i) eight correct? \qquad
j) nine correct? \qquad
k) All ten correct? \qquad

What are the number of ways to answer a 10 question, true/false quiz? __1024
What are the number of way to get exactly \boldsymbol{x} questions correct? (use the table below)

0 Correct	1 Correct	2 Correct	3 Correct	4 Correct	5 Correct	6 Correct	7 Correct	8 Correct	9 Correct	10 Correct
1	10	45	120	210	252	210	120	45	10	1

What is the probability of getting:
a) zero correct? $\frac{1}{1024}=9.765625 \mathrm{E}^{-4} \approx 0.0009765$
b) one correct? $\frac{10}{1024}=0.0097656$
c) two correct? $\frac{45}{1024}=0.0439453$
d) three correct? \qquad
e) four correct? \qquad
f) five correct? \qquad
(simply follow the pattern)

