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Chapter 7

Random Variables

 7.1 Introduction to Random Variables

 7.2 Discrete Random Variables

 7.3 Continuous Random Variables

 7.4 Transforming and Combining Random Variables

 7.5 Binomial and Geometric Random Variables
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Section 7.5
Binomial and Geometric Random Variables

After this section, you should be able to…

 DETERMINE whether the conditions for a binomial setting are met

 COMPUTE and INTERPRET probabilities involving binomial random 

variables

 CALCULATE the mean and standard deviation of a binomial random 

variable and INTERPRET these values in context

 CALCULATE probabilities involving geometric random variables

Learning Objectives
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Binomial Settings

When the same chance process is repeated several times, we are often interested 

in whether a particular outcome does or doesn’t happen on each repetition. In 

some cases, the number of repeated trials is fixed in advance and we are 

interested in the number of times a particular event (called a “success”) occurs.  If 

the trials in these cases are independent and each success has an equal chance 

of occurring, we have a binomial setting.

Definition:
A binomial setting arises when we perform several independent trials of the 

same chance process and record the number of times that a particular 

outcome occurs. The four conditions for a binomial setting are

• Binary? The possible outcomes of each trial can be classified as 

“success” or “failure.”

• Independent? Trials must be independent; that is, knowing the result 

of one trial must not have any effect on the result of any other trial.

• Number? The number of trials n of the chance process must be fixed 

in advance.

• Success? On each trial, the probability p of success must be the 

same.
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Binomial Random Variable

Consider tossing a coin n times. Each toss gives either heads or tails. 

Knowing the outcome of one toss does not change the probability of 

an outcome on any other toss.  If we define heads as a success, then 

p is the probability of a head and is 0.5 on any toss.

The number of heads in n tosses is a binomial random variable X. 

The probability distribution of X is called a binomial distribution.

Definition:

The count X of successes in a binomial setting is a binomial random 

variable. The probability distribution of X is a binomial distribution with 

parameters n and p, where n is the number of trials of the chance process 

and p is the probability of a success on any one trial. The possible values of 

X are the whole numbers from 0 to n.

Note: When checking the Binomial condition, be sure to check the 

BINS and make sure you’re being asked to count the number of 

successes in a certain number of trials!
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Binomial Probabilities

In a binomial setting, we can define a random variable (say, X) as the 

number of successes in n independent trials. We are interested in 

finding the probability distribution of X.

Each child of a particular pair of parents has probability 0.25 of 

having type O blood. Genetics says that children receive genes from 

each of their parents independently. If these parents have 5 children, 

the count X of children with type O blood is a binomial random 

variable with n = 5 trials and probability p = 0.25 of a success on 

each trial. In this setting, a child with type O blood is a “success” (S) 

and a child with another blood type is a “failure” (F). 

What’s P(X = 2)?

P(SSFFF) = (0.25)(0.25)(0.75)(0.75)(0.75) = (0.25)2(0.75)3 = 0.02637 

However, there are a number of different arrangements in which 2 out of 

the 5 children have type O blood:

SFSFF SFFSF SFFFS FSSFF

FSFSF FSFFS FFSSF FFSFS FFFSS

SSFFF

Verify that in each arrangement, P(X = 2) = (0.25)2(0.75)3 = 0.02637

Therefore, P(X = 2) = 10(0.25)2(0.75)3 = 0.2637 

Example
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Binomial Coefficient

Note, in the previous example, any one arrangement of 2 S’s and 3 F’s 

had the same probability.  This is true because no matter what 

arrangement, we’d multiply together 0.25 twice and 0.75 three times.

We can generalize this for any setting in which we are interested in k

successes in n trials.  That is,
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

P(X  k)  P(exactly k successes in n trials)

= number of arrangements  pk(1 p)nk

Definition:

The number of ways of arranging k successes among n observations is 

given by the binomial coefficient

for k = 0, 1, 2, …, n where

n! = n(n – 1)(n – 2)•…•(3)(2)(1)

and 0! = 1. 

n

k










n!

k!(n  k)!
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Binomial Probability

The binomial coefficient counts the number of different ways in 

which k successes can be arranged among n trials.  The 

binomial probability P(X = k) is this count multiplied by the 

probability of any one specific arrangement of the k successes.
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If X has the binomial distribution with n trials and probability p of success on 

each trial, the possible values of X are 0, 1, 2, …, n. If k is any one of 

these values, 

Binomial Probability



P(X  k) 
n

k








p

k(1 p)nk

Probability of 

n-k failures

Number of 

arrangements 

of k successes
Probability of k

successes
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Example: Inheriting Blood Type

Each child of a particular pair of parents has probability 0.25 of having blood 

type O. Suppose the parents have 5 children

(a) Find the probability that exactly 3 of the children have type O blood.



P(X  3) 
5

3








(0.25)3(0.75)2 10(0.25)3(0.75)2  0.08789

(b) Should the parents be surprised if more than 3 of their children have 

type O blood?

Let X = the number of children with type O blood. We know X has a binomial 

distribution with n = 5 and p = 0.25.



P(X  3)  P(X  4) P(X  5)


5

4








(0.25)4 (0.75)1 

5

5








(0.25)5(0.75)0

 5(0.25)4 (0.75)1 1(0.25)5(0.75)0

 0.01465  0.00098  0.01563

To answer this, we need to find P(X > 3).

Since there is only a 

1.5% chance that more 

than 3 children out of 5 

would have Type O 

blood, the parents 

should be surprised!
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Mean and Standard Deviation of a Binomial 

Distribution

We describe the probability distribution of a binomial random variable just like 

any other distribution – by looking at the shape, center, and spread. Consider 

the probability distribution of X = number of children with type O blood in a 

family with 5 children.
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Shape: The probability distribution of X is skewed to 

the right. It is more likely to have 0, 1, or 2 children 

with type O blood than a larger value.

Center: The median number of children with type O 

blood is 1.  Based on our formula for the mean:



X  xi pi  (0)(0.2373)1(0.39551) ... (5)(0.00098)
1.25

Spread: The variance of X is 



X

2  (xi X )2 pi  (01.25)2(0.2373) (11.25)2(0.3955)  ...

(51.25)2(0.00098)  0.9375

The standard deviation  of X is



X  0.9375  0.968

xi 0 1 2 3 4 5

pi 0.2373 0.3955 0.2637 0.0879 0.0147 0.00098
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Mean and Standard Deviation of a Binomial 

Distribution

Notice, the mean µX = 1.25 can be found another way. Since each 

child has a 0.25 chance of inheriting type O blood, we’d expect 

one-fourth of the 5 children to have this blood type.  That is, µX

= 5(0.25) = 1.25. This method can be used to find the mean of 

any binomial random variable with parameters n and p.
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If a count X has the binomial distribution with number of trials n and 

probability of success p, the mean and standard deviation of X are

Mean and Standard Deviation of a Binomial Random Variable



X  np

X  np(1 p)

Note: These formulas work ONLY for binomial distributions.  

They can’t be used for other distributions!
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Example: Bottled Water versus Tap Water

Mr. Bullard’s 21 AP Statistics students did the Activity on page 340. If we assume the 

students in his class cannot tell tap water from bottled water, then each has a 1/3 

chance of correctly identifying the different type of water by guessing.  Let X = the 

number of students who correctly identify the cup containing the different type of water.

Find the mean and standard deviation of X.

Since X is a binomial random variable with parameters n = 21 and p = 1/3, we can 

use the formulas for the mean and standard deviation of a binomial random 

variable.



X  np

 21(1/3)  7



X  np(1 p)

 21(1/3)(2 /3)  2.16

We’d expect about one-third of his 

21 students, about 7, to guess 

correctly.

If the activity were repeated many 

times with groups of 21 students 

who were just guessing, the 

number of correct identifications 

would differ from 7 by an average of 

2.16.
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In practice, the binomial distribution gives a good approximation as long as we don’t 

sample more than 10% of the population.

Binomial Distributions in Statistical Sampling

The binomial distributions are important in statistics when we want to 

make inferences about the proportion p of successes in a population.

Suppose 10% of CDs have defective copy-protection schemes that can harm 

computers. A music distributor inspects an SRS of 10 CDs from a shipment of 

10,000.  Let X = number of defective CDs.  What is P(X = 0)? Note, this is not 

quite a binomial setting.  Why?
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The actual probability is



P(no defectives) 
9000

10000


8999

9999


8998

9998
 ...

8991

9991
 0.3485



P(X  0) 
10

0









(0.10)0(0.90)10  0.3487Using the binomial distribution,

When taking an SRS of size n from a population of size N, we can use a 

binomial distribution to model the count of successes in the sample as 

long as



n 
1

10
N

Sampling Without Replacement Condition
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Normal Approximation for Binomial Distributions

As n gets larger, something interesting happens to the shape of a 

binomial distribution.  The figures below show histograms of 

binomial distributions for different values of n and p. What do 

you notice as n gets larger?
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Suppose that X has the binomial distribution with n trials and success 

probability p. When n is large, the distribution of X is approximately 

Normal with mean and standard deviation

As a rule of thumb, we will use the Normal approximation when n is so 

large that np ≥ 10 and n(1 – p) ≥ 10.  That is, the expected number of 

successes and failures are both at least 10.

Normal Approximation for Binomial Distributions



X  np



X  np(1 p)
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Example: Attitudes Toward Shopping

 Sample surveys show that fewer people enjoy shopping 
than in the past. A survey asked a nationwide random 
sample of 2500 adults if they agreed or disagreed that “I 
like buying new clothes, but shopping is often frustrating and 
time-consuming.” Suppose that exactly 60% of all adult US 
residents would say “Agree” if asked the same question. Let 
X = the number in the sample who agree. 

 Estimate the probability that 1520 or more of the sample 
agree.

B: Success = agree, Failure = don’t agree

I: Because the population of U.S. adults is greater than 25,000, it is 

reasonable to assume the sampling without replacement condition is met.

N: n = 2500 trials of the chance process

S: The probability of selecting an adult who agrees is p = 0.60

1) Verify that X is approximately a binomial random variable.
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Example: Attitudes Toward Shopping

Sample surveys show that fewer people enjoy shopping than in the past. A survey asked a nationwide 

random sample of 2500 adults if they agreed or disagreed that “I like buying new clothes, but 

shopping is often frustrating and time-consuming.” Suppose that exactly 60% of all adult US 

residents would say “Agree” if asked the same question. Let X = the number in the sample who 

agree. Estimate the probability that 1520 or more of the sample agree.

1) Verify that X is approximately a binomial random variable.



  np  2500(0.60) 1500

  np(1 p)  2500(0.60)(0.40)  24.49



z 
15201500

24.49
 0.82

2) Check the conditions for using a Normal approximation.

B: Success = agree, Failure = don’t agree

I: Because the population of U.S. adults is greater than 25,000, it is reasonable to assume the 

sampling without replacement condition is met.

N: n = 2500 trials of the chance process

S: The probability of selecting an adult who agrees is p = 0.60

Since np = 2500(0.60) = 1500 and n(1 – p) = 2500(0.40) = 1000 are 

both at least 10, we may use the Normal approximation.

3) Calculate P(X ≥ 1520) using a Normal approximation.



P(X 1520)  P(Z 0.82) 10.79390.2061
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Geometric Settings

In a binomial setting, the number of trials n is fixed and the binomial random variable 

X counts the number of successes. In other situations, the goal is to repeat a 

chance behavior until a success occurs.  These situations are called geometric 

settings.

Definition:
A geometric setting arises when we perform independent trials of the same 

chance process and record the number of trials until a particular outcome 

occurs. The four conditions for a geometric setting are

• Binary? The possible outcomes of each trial can be classified as 

“success” or “failure.”

• Independent? Trials must be independent; that is, knowing the result 

of one trial must not have any effect on the result of any other trial.

• Trials? The goal is to count the number of trials until the first 

success occurs.

• Success? On each trial, the probability p of success must be the 

same.
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Geometric Random Variable

In a geometric setting, if we define the random variable Y to be the 

number of trials needed to get the first success, then Y is called a 

geometric random variable. The probability distribution of Y is 

called a geometric distribution.

Definition:

The number of trials Y that it takes to get a success in a geometric setting is 

a geometric random variable. The probability distribution of Y is a 

geometric distribution with parameter p, the probability of a success on 

any trial. The possible values of Y are 1, 2, 3, ….

Note: Like binomial random variables, it is important to be able to 

distinguish situations in which the geometric distribution does and 

doesn’t apply!
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Example: The Lucky Day Game

Read the activity on the handout.  The random variable of interest in this game is Y = the 

number of guesses it takes to correctly identify the day of the week, chosen at random.  

What is the probability the first student guesses correctly?  The second? Third? What is 

the probability the kth student guesses corrrectly?

Verify that Y is a geometric random variable.



P(Y 1) 1/7

B: Success = correct guess, Failure = incorrect guess

I: The result of one student’s guess has no effect on the result of any other guess.

T: We’re counting the number of guesses up to and including the first correct guess.

S: On each trial, the probability of a correct guess is 1/7.

Calculate P(Y = 1), P(Y = 2), P(Y = 3), and P(Y = k) 



P(Y  2)  (6/7)(1/7)  0.1224



P(Y  3)  (6/7)(6/7)(1/7)  0.1050

Notice the pattern?

If Y has the geometric distribution with probability p of 

success on each trial, the possible values of Y are 

1, 2, 3, … . If k is any one of these values,



P(Y  k)  (1 p)k1 p

Geometric Probability
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Mean of a Geometric Distribution

The table below shows part of the probability distribution of Y. We can’t show the 

entire distribution because the number of trials it takes to get the first success 

could be an incredibly large number.
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Shape: The heavily right-skewed shape is 

characteristic of any geometric distribution. That’s 

because the most likely value is 1.

Center: The mean of Y is µY = 7. We’d expect it to 

take 7 guesses to get our first success.

Spread: The standard deviation of Y is σY = 6.48. If the class played the Birth Day 

game many times, the number of homework problems the students receive would differ 

from 7 by an average of 6.48.

yi 1 2 3 4 5 6 …

pi 0.143 0.122 0.105 0.090 0.077 0.066

If Y is a geometric random variable with probability p of success on 

each trial, then its mean (expected value) is E(Y) = µY = 1/p.

Mean (Expected Value) of Geometric Random Variable
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Section 7.5

Binomial and Geometric Random Variables

In this section, we learned that…

 A binomial setting consists of n independent trials of the same chance 

process, each resulting in a success or a failure, with probability of success 

p on each trial. The count X of successes is a binomial random variable. 

Its probability distribution is a binomial distribution.

 The binomial coefficient counts the number of ways k successes can be 

arranged among n trials.

 If X has the binomial distribution with parameters n and p, the possible 

values of X are the whole numbers 0, 1, 2, . . . , n. The binomial probability 

of observing k successes in n trials is

Summary



P(X  k) 
n

k








p

k(1 p)nk
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Section 7.5

Binomial and Geometric Random Variables

In this section, we learned that…

 The mean and standard deviation of a binomial random variable X are 

 The Normal approximation to the binomial distribution says that if X is a 

count having the binomial distribution with parameters n and p, then when n 

is large, X is approximately Normally distributed. We will use this 

approximation when np ≥ 10 and n(1 - p) ≥ 10.

Summary



X  np

X  np(1 p)
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Section 7.5

Binomial and Geometric Random Variables

In this section, we learned that…

 A geometric setting consists of repeated trials of the same chance process 
in which each trial results in a success or a failure; trials are independent; 
each trial has the same probability p of success; and the goal is to count the 
number of trials until the first success occurs. If Y = the number of trials 
required to obtain the first success, then Y is a geometric random variable. 
Its probability distribution is called a geometric distribution.

 If Y has the geometric distribution with probability of success p, the possible 
values of Y are the positive integers 1, 2, 3, . . . . The geometric probability 
that Y takes any value is

 The mean (expected value) of a geometric random variable Y is 1/p.

Summary



P(Y  k)  (1 p)k1 p
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Looking Ahead…

We’ll learn how to describe sampling distributions that 

result when data are produced by random sampling.

We’ll learn about

 Sampling Distributions

 Sample Proportions

 Sample Means

In the next Chapter …Ch 8


