- Students will find the probability of an event (and the odds of an event).
- Students will understand and be able to compare: (1) Classical probability, (2) Empirical probability, and (3) Subjective probability
- Students will understand and use the vocabulary and notation associated with probability

Vocabulary

- Probability (P) - is the likelihood that an event will occur.
- Outcomes - when you do a probability experiment, each result of a single trial is called an outcome.
- Event - is an outcome or a collection of outcomes
- Sample Space - A list of every possible outcome for a given condition (i.e., rolling dice, or drawing cards, etc.)

What is the sample space for rolling 2 dice?

	$\bullet \cdot$	$\stackrel{\circ}{\circ}$::	\because	:::
. \cdot	$\cdot^{\cdot} \cdot$	$\bullet_{\bullet} \cdot$:: ${ }^{\circ}$.	$\because \cdot \square$:
$\cdot \cdot$	$\bullet \cdot$	$\bullet \cdot \square$: $: \cdot$	\because	::
::	-•:	$\because:$:: : :	$\because: 8$:\%:
$\cdot \because:$	$\bullet \because:$	$\because \because$::	\because	::\%:
- ::	- $\cdot:$:		:: :	:	::\%

36 possible outcomes

Vocabulary

- Fundamental Counting Principle - is used to determine the total number of ways that successive events can occur
- So, if there are m ways for one event to occur, and n ways for another event to occur, then there are $m \cdot n$ ways for both events to occur
- If you have 5 shirts, 4 pants, and 7 pairs of shoes, you can make 140 outfits.

Vocabulary

- Complement of an Event P(A') are all of the other outcomes not in Event A

Example: Rolling a "5" or "6"

Event A: $\{5,6\}$
Number of ways it can happen: 2

$$
P(A)=\frac{2}{6}=\frac{1}{3} \quad P\left(A^{\prime}\right)=\frac{4}{6}=\frac{2}{3}
$$

The Complement of Event \mathbf{A} is $\{1,2,3,4\}$

$$
P(A)+P\left(A^{\prime}\right)=1
$$

Types of Probability

- There are 3 types of probability

Theoretical Probability Experimental Probability
Subjective Probability

- Let's look at each one individually...

Classical Probability

- Classical or Theoretical Probability is based upon the number of favorable outcomes divided by the total number of outcomes

Example:

- In the roll of a die, the probability of getting an even number is $3 / 6$ or $1 / 2$.
- Notation used:

$$
P(\text { even })=\frac{3}{6} \text { or } \frac{1}{2}
$$

How does that work?

- Typically a six-sided die contains the numbers 1, 2, 3, 4, 5, and 6.
- Of those numbers only 2, 4, and 6 are even.
\square So, we can set up a ratio of the number of favorable outcomes divided by the total number of outcomes, which is $3 / 6$ or $1 / 2$

Theoretical Probability Formula

If we denote $\boldsymbol{A}=$ desired event, then Probability of this event is: $\mathrm{P}(\boldsymbol{A})$

Theoretical Probability :

$P(\boldsymbol{A})=\quad$ Number of favorable outcomes Total number of outcomes

Example \# 1

- A box contains 5 green pens, 3 blue pens, 8 black pens and 4 red pens. A pen is picked at random
- What is the probability that the pen is green? There are $5+3+\mathbf{8}+\mathbf{4}$ or $\mathbf{2 0}$ pens in the box

$$
P(\text { green })=\frac{\# \text { green pens }}{\text { Total \# of pens }}=\frac{5}{20}=\frac{1}{4}
$$

Experimental (Empirical) Probability

\square As the name suggests, Experimental (or empirical) Probabillity is based upon repetitions of an actual experiment.

Example:

If you toss a coin 10 times and record heads for 8 trials, then the experimental probability was $P($ heads $)=\frac{8}{10}=\frac{4}{5}$

Experimental Probability Formula

- Experimental Probability:

$\mathrm{P}(E)=$ Number of favorable outcomes Total number trials

Example \#2

\square In an experiment a coin is tossed 15 times. The recorded outcomes were: 6 heads and 9 tails. What was the experimental probability of the coin being heads?
P (heads) $=\frac{\text { \# Heads }}{\text { Total \# Tosses }}=\frac{6}{15}$

Subjective Probability

- Subjective probability describes an individual's personal judgement about how likely a particular event is to occur. It is not based on any precise computation but is often a reasonable assessment based upon given knowledge.
\square It is still expressed within the scale from 0 (impossible) to 1 (certain).

Subjective Probability

- Going into last year's NCAA basketball tournament: What do you think the probability is for UK to win the Championship?
口 U of K Fan: "I think it is about 95\%"
口 U of L Fan: "I guess it's a 60\% to 70\% chance that they'll win."
- Duke Fan: "I think it is about a 20\% chance, especially if they have to play us!"

Subjective Probability

\square What do you think the probability is that the Chicago Cubs will win the World Series?

- General Baseball Fans: "I think there is about a 15\% chance"
- St. Louis Cardinal Fans: "There is probably a 10\% chance"
- Cub Fans: "There almost no chance! We're talking about the cursed Cubbies!"

Sample Space of 2 Dice

Experimental Prob.

$$
P(\text { sum of } 7)=\frac{6}{36}=\frac{1}{6}
$$

Theoretical Prob.

Rolled the dice 10 times:
$1^{\text {st }}: 2,5$
$2^{\text {nd }}: 3,4$
$3^{\text {rd }}: 1,3$
$4^{\text {th }}: 5,5$
$5^{\text {th }}: 6,1$
$6^{\text {th }}: 3,6$
$7^{\text {th }}: 5,4$
$8^{\text {th }}: 4,4$
$9^{\text {th }}: 1,2$
$10^{\text {th }}: 4,3$
$P($ sum 7$)=\frac{4}{10}$

Statistics \& Probability App: Learning Statistics \& Probability

Link: http://go.golearningbus.com/

By Quizmine.Com
Open iTunes to buy and download apps.

Description
*****GoLearning

More than 4 million
Quizmine.Com W

What's New
With Bug Fixes

Teenage Pregnancy

 Statistics (1991-2012)| - - All | - Non-Hispanic White
 - American Indian/Alaska Native$\quad-$ Non-Hispanic Black |
| :--- | :--- |
| - Asian/Pacific Islander | $\rightarrow-$ Hispanic |

 http://www.cdc.gov/teenpregnancy/about/birth-rates-chart-2000-2011-text.htm

Teenage Pregnancy for Girls in Source: Time Magazine (2009) Teen
Foster-Care Pregnancy: An Epidemic in Foster Care By Amy Sullivan

- A study at the University of Chicago found that nearly half of girls who had spent time in the foster-care system had been pregnant at least once by the time they were 19 years old.

$$
P(\text { foster teen preg. })=\frac{500}{1000}=\frac{1}{2}
$$

- Even more troubling - close to one-quarter had experienced multiple pregnancies in their teens.

$$
P(\text { foster teen mult.preg. })=\frac{240}{1000} \approx \frac{1}{4}
$$

College Graduation Rates

Source: National Center for Educational Statistics

- Question:

What are the graduation rates for students obtaining a bachelor's degree?

- Response:

The 2012 graduation rate for first-time, full-time undergraduate students who began their pursuit of a bachelor's degree (B.A.) at a 4 -year degree-granting institution in fall 2006 was 59 percent.

- $P(B . A . \mid$ first time,full)

Conditional Probability

$\square \mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ the (conditional) probability that event A will occur given that event B has occurred already

- The usual notation for "event A occurs given that event B has occurred" is "A | B" (A given B). The symbol | is a vertical line and does not imply division. $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ denotes the probability that event A will occur given that event B has occurred already.

College Graduation Rates
Source: National Center for Educational Statistics

- Gents: $P(B . A . \mid$ male $)=\frac{56}{100}$
- Ladies: $P(B . A . \mid$ female $)=\frac{61}{100}$
\square Private: $P(B . A . \mid$ nonprofit $)=\frac{66}{100}$
\square Public: $P(B . A . \mid$ nonprofit $)=\frac{57}{100}$

$$
32
$$

- Private $P(B . A . \mid$ for-profit $)=\frac{32}{\mathbf{1 0 0}}$

Compound Events

- The UNION (U) or INTERSECTION (\cap) of two events is called a compound event
\square If $P(A)=$ probability that event A occurs
\square If $P(B)=$ probability that event B occurs
- The UNION (U) of two event is the same as finding P (A or B);
\square The INTERSECTION (\cap) of two event is the same as finding P (A and B);

Compound Events

- The addition rule is a result used to determine the probability that event A or event B occurs or both occur; UNION (U):
- $\mathrm{P}(\mathrm{A} \cup B)=P(A)+P(B)-P(A$ and $B)$
- If the events do not share any outcomes in common (mutually exclusive), then the $\mathrm{P}(\mathrm{A}$ or B$)$ is simply $\mathrm{P}(\mathrm{A} \cup B)=P(A)+P(B)$

Vocabulary for Compound Events

- Two events are mutually exclusive (or disjoint) if it is impossible for them to occur together.
- Example: Drawing one card from a deck that is both an Ace and a King
- Notation: $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A} \cap B)$
- $P(A$ and $B)=0$

Compound Event Example

- Suppose we wish to find the probability of drawing either a king or a spade in a single draw from a pack of 52 cards:
- We define the events:
- Event $A=$ draw a king; and Event $B=$ draw a spade
- so P (King or a Spade) can be written as $\mathrm{P}(\mathrm{A} \cup B)$

Compound Events (cont.)

- $\mathrm{P}($ King \cup Spade $)=P(A)+P(B)-P(A$ and $B)$
- or $\mathrm{P}(\mathrm{A} \cup B)=P(A)+P(B)-P(A \cap B)$
\square Since there are 4 kings in the pack and 13 spades, but 1 card is both a king and a spade, we have:
$\square \mathrm{P}($ King \cup Spade $)=P(A)+P(B)-P(A$ and $B)=$

$$
4 / 52+13 / 52-1 / 52=16 / 52
$$

\square So, the probability of drawing either a king or a spade is $16 / 52(=4 / 13)$.

Compound Events

- The multiplication rule is a result used to determine the probability that two events, A and B, both occur; INTERSECTION (\cap)
- Notation: $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(A \cap B)$
- For independent events, that is events which have no influence on one another, the rule is $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(B)$

Compound Events

- Given a six-sided die and a fair coin, what is the probability of rolling a 5 or 6 and getting tails?
- We define the events:
\square Event $A=$ rolling a 5 or 6 ; and Event $B=$ coin lands on tails
- $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$

$$
\mathrm{P}(A \cap B)=\frac{2}{6} \cdot \frac{1}{2}=
$$

$$
\frac{1}{6}
$$

Compound Events

- Two events A and B are called independent events if knowledge about the occurrence of one of them has no effect on the probability of the other one, that is, if
$\square \boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})=\boldsymbol{P}(\boldsymbol{B})$, or equivalently
$\square P(A \mid B)=P(A)$.

Independent events

- We define the events:
- Event $A=$ rolling a 5 or 6; and Event $B=$ coin lands on tails
$\square P(B \mid A)=P(B):$
- $P($ tails \mid roll 5 or 6$)=\frac{1}{2}$
$\square P(A \mid B)=P(A):$
ㅁ $P($ roll 5 or $6 \mid$ tails $)=\frac{2}{6}=\frac{1}{3}$

Conditional Probability

- Sometimes the probability of an event must be computed using the knowledge that some other event has happened (or is happening, or will happen - the timing is not important). This type of probability is called conditional probability.

Conditional Probability

- The probability of event B, computed on the assumption that event A has happened, is called the conditional probability of \boldsymbol{B}, given \boldsymbol{A}, and is denoted $\boldsymbol{P}(\boldsymbol{B} \mid \boldsymbol{A})$.
- What is the probability of drawing an Ace from a deck of 52 cards?
- What is the probability of drawing an Ace from a deck, given that you already drew an Ace?

Conditional Probability

ㅁ The conditional probability of \boldsymbol{B}, given A, and is given by

$$
P(B \mid A)=\frac{P(A \bigcap B)}{P(A)}=\frac{P(A \text { and } B)}{P(A)}
$$

P (Draw an Ace, given you drew an Ace)

$$
P(B \mid A)=\quad \frac{\mathrm{P}(A \cap B)}{P(A)}=\frac{\frac{4}{52} \cdot \frac{3}{51}}{\frac{4}{52}}=\frac{1}{17}
$$

Dependent events

- Two events are called dependent events if the occurrence of one affects the occurrence of the other.
$\square \mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(B \mid A)$ or
$\square \mathrm{P}(\mathrm{A} \cap B)=\frac{4}{52} \cdot \frac{1}{17}=\frac{\mathbf{1}}{221}$

Example

From the sample space
$S=\{2,3,4,5,6,7,8,9\}$, a single number is to be selected randomly.
Given the events
A: selected number is odd, and B : selected number is a multiple of 3 .
find each probability.
a) $P(B)$
b) $P(A$ and $B)$
c) $P(B \mid A)$

Example Solutions

$\square A$: selected number is odd, and
$\square B$: selected number is a multiple of 3 .
a) $B=\{3,6,9\}$, so $P(B)=3 / 8$
b) $P(A$ and $B)=\{3,5,7,9\} \quad\{3,6,9\}=\{3$, 9\}, so

$$
P(A \text { and } B)=2 / 8=1 / 4
$$

c) The given condition A reduces the sample space

$$
\text { to }\{3,5,7,9\} \text {, so } P(B \mid A)=2 / 4=1 / 2
$$

Odds

Odds

- Another way to describe the chance of an event occurring is with odds. The odds in favor of an event is the ratio that compares the number of ways the event can occur to the number of ways the event cannot occur.
- We can determine odds using the following ratios:

Odds in Favor $=$
$\frac{\text { number of successes }}{\text { number of failures }}$
Odds against =
number of failures
number of successes

Example

- Suppose we play a game with 2 number cubes.
- If the sum of the numbers rolled is 6 or less - you win!
- If the sum of the numbers rolled is not 6 or less - you lose

In this situation we can express odds as follows:

Odds in favor $=\frac{\text { numbers rolled is } 6 \text { or less }}{\text { numbers rolled is not } 6 \text { or less }} \frac{15}{21}=\frac{5}{7}$
Odds against $=\frac{\text { numbers rolled is not } 6 \text { or less }}{\text { numbers rolled is } 6 \text { or less }} \frac{21}{15}=\frac{7}{5}$

Example

ㅁ A bag contains 5 yellow marbles, 3 white marbles, and 1 black marble. What are the odds drawing a white marble from the bag?
$\begin{array}{lll}\text { Odds in favor }= & \begin{array}{ll}\text { number of white marbles } & \\ \text { Oumber of non-white marbles } & \\ \text { Odds against }= & \begin{array}{l}\text { number of non-white marbles } \\ \text { number of white marbles }\end{array}\end{array} \frac{6}{3}\end{array}$

Therefore, the odds for are 1:2 and the odds agailnst are 2:1

Comments

- On the next couple of slides are some practice problems...The answers are on the last slide...
- Do the practice and then check your answers...If you do not get the same answer you must question what you did...go back and problem solve to find the error...
- If you cannot find the error bring your work to me and I will help...

Your Turn - Probability

- Find the probability of randomly choosing a specific marble from the given bag of red and white marbles.

1. Number of red marbles 16

Total number of marbles 64
P(red)
2. Number of red marbles

Total number of marbles
8
$40 \quad \mathrm{P}$ (white)
3. Number of white marbles 7 Total number of marbles 20
P (white)
4. Number of white marbles 24

Total number of marbles 32 P (red)

Your Turn - Odds

- Find the favorable odds of choosing the indicated letter from a bag that contains the letters in the name of the given state.

5. S; Mississippi $\frac{4}{7}$
6. N; Pennsylvania $\frac{3}{9}=\frac{1}{3}$
7. A; Nebraska $\frac{2}{6}=\frac{1}{3}$
8. G; Virginia
$\frac{1}{7}$

Your Turn

- You toss a six-sided number cube 20 times. For twelve of the tosses the number tossed was 3 or more.

9. What is the experimental probability that the number tossed was 3 or more?
10. What are the favorable odds that the number tossed was 3 or more?

Your Turn Solutions

1. $1 / 4$
2. $4 / 5$
3. $13 / 20$
4. $1 / 4$
5. $4 / 7$
6. $3 / 9$ or $1 / 3$
7. $2 / 6$ or $1 / 3$
8. $1 / 7$
9. $3 / 5$
10. $3 / 2$

Summary

- A key tool in making learning effective is being able to summarize what you learned in a lesson in your own words...
- In this lesson we talked about probability and odds... Therefore, in your own words summarize this lesson...be sure to include key concepts that the lesson covered as well as any points that are still not clear to you...

