Monday, Sept. 20, 2021 Review of Simplifying Radicals Consider problem #5 5) $\sqrt{72}$

What question are you asking yourself to simplify any radical expression?

Note: $\sqrt[2]{72} \neq \sqrt[3]{72} \neq \sqrt[5]{72}$

5) $\sqrt{72} = \sqrt[2]{72}$ (*Note*: The index is a "2", or square root when it is not shown within the radical symbol)

What question are you asking yourself to simplify any radical expression?

<u>Question</u>: What number **multiplied by itself** *n* (*index*) **times**, gives you the product (radicand = x) under the radical?

Examples:

a) ³√64 → "what number multiplied by itself 3 times equals 64
b) ⁴√625 → "what number multiplied by itself 4 times equals 625
c) ⁵√32 → "what number multiplied by itself 5 times equals 32

Note: $\sqrt[2]{72} \neq \sqrt[3]{72} \neq \sqrt[5]{72}$ Is the radicand a *perfect square* or **perfect cube** or etc.? 5) $\sqrt{72} = \sqrt[2]{72} = \sqrt{36 \cdot 2} = 6\sqrt{2}$ 8) $\sqrt{27} = \sqrt{3 \cdot 3 \cdot 3} = \sqrt{3^2 \cdot 3} = 3\sqrt{3}$

15)
$$2\sqrt{20} + 3\sqrt{5} =$$

 $2\sqrt{4 \cdot 5} = 2\sqrt{4}\sqrt{5} = 4\sqrt{5}$

$$4\sqrt{5} + 3\sqrt{5} = 7\sqrt{5}$$

12) $3\sqrt{5} \cdot 2\sqrt{10} = 6\sqrt{50}$

$$6\sqrt{2 \cdot 25} = 6 \cdot 5\sqrt{2} = 30\sqrt{2}$$

$$a\sqrt{b} \cdot c\sqrt{d} = ac\sqrt{bd}$$

 $a\sqrt{b} + c\sqrt{d} = cannot \ be \ combined \ unless \ you \ can$ Simplify either \sqrt{b} or \sqrt{d}

 $3\sqrt{24} + 5\sqrt{6} =$ $3\sqrt{4}\sqrt{6} = 6\sqrt{6}$

 $6\sqrt{6} + 5\sqrt{6} = 11\sqrt{6}$