1) Find the solution set of |x - 2| < 6.

A.
$$\{x \mid -8 < x < 4\}$$

B.
$$\{x \mid -4 < x < 8\}$$

C.
$$\{x \mid x < 4\}$$

D.
$$\{x \mid x < 8\}$$

2) Which graph represents the solution set to this system of equations?

$$\begin{cases} y \le x \\ y \ge -3 \\ y \le 15 - 5x \end{cases}$$

Α.

C.

В.

D.

- 3) What are the zeros of the quadratic function $f(x) = x^2 + 3x + 1$?
 - **A.** $\frac{-3 \pm \sqrt{5}}{2}$
 - **B.** $\frac{-3 \pm \sqrt{13}}{2}$
 - **c.** $\frac{3 \pm \sqrt{5}}{2}$
 - **D.** $\frac{3 \pm \sqrt{13}}{2}$
- 4) What is the equation of the circle with center (3,-6) and radius $\frac{15}{8}$?
 - **A.** $(x-3)^2 + (y+6)^2 = \frac{225}{64}$
 - **B.** $(x-3)^2 + (y+6)^2 = \frac{15}{8}$
 - **C.** $(x+3)^2 + (y-6)^2 = \frac{225}{64}$
 - **D.** $(x+3)^2 + (y-6)^2 = \frac{15}{8}$
- 5) The radius of circle O is 15 m. Two radii, \overline{OA} and \overline{OB} , form an angle of 80°. To the nearest tenth of a meter, how long is chord \overline{AB} ?
 - **A.** 14.8
 - **B.** 15.0
 - **C.** 19.3
 - **D.** 21.2

6) What is AB?

$$A = \begin{bmatrix} -3 & 1 \\ 6 & 0 \\ 4 & 2 \\ 9 & 7 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 6 \\ 5 & 1 \end{bmatrix}$$

A.
$$\begin{bmatrix} 52 & 156 \\ 130 & 26 \end{bmatrix}$$

$$\mathbf{c.} \begin{bmatrix} -6 & 6 \\ 30 & 0 \\ 8 & 12 \\ 45 & 7 \end{bmatrix}$$

$$\mathbf{B.} \begin{bmatrix} -1 & -17 \\ 12 & 36 \\ 18 & 26 \\ 53 & 61 \end{bmatrix}$$

D.
$$\begin{bmatrix} -42 & 14 \\ 84 & 0 \\ 56 & 28 \\ 126 & 98 \end{bmatrix}$$

7) What is the solution set to the inequality |3x-2| < 7?

A.
$$\{x \mid -\frac{5}{3} < x < 3\}$$

B.
$$\{x \mid -3 < x < \frac{5}{3}\}$$

C.
$$\{x \mid x > 3 \text{ or } x < -\frac{5}{3}\}$$

D.
$$\{x \mid x > \frac{5}{3} \text{ or } x < -3\}$$

8) Which transformations can be performed on the graph of
$$f(x) = x^2$$
 that result in the graph of $f'(x) = -2x^2 - 12x - 13$?

- The equation $\frac{(x-4)^2}{c^2} + \frac{(y-6)^2}{d^2} = 36$ describes an ellipse with the center at (4,6), a vertical major axis with a length of 6, and a horizontal minor axis with a length of 4. What are the values of c and d?
 - **A.** c = 2 and d = 3
 - **B.** c = 3 and d = 2
 - **C.** $c = \frac{1}{2}$ and $d = \frac{1}{3}$
 - **D.** $c = \frac{1}{3}$ and $d = \frac{1}{2}$
- **10)** How many real zeros does h(t) have?

$$h(t) = 4t^3 - 2t^2 + t - 10$$

- **A**. 3
- **B.** 2
- **C**. 1
- **D.** 0
- **11)** Which best describes the range of this graph of the relation y = f(x)?

- **A.** $-1 \le x \le 2$
- **B.** $-\frac{1}{2} \le x \le \frac{1}{2}$
- **C.** $-1 \le y \le 2$
- **D.** $-\frac{1}{2} \le y \le \frac{1}{2}$

- **12)** In a geometric sequence where $a_1 = 15$ and $a_5 = 240$, what is the first term in the sequence that is a multiple of 4?
 - **A.** $a_2 = 20$
 - **B.** $a_3 = 60$
 - **C.** $a_4 = 60$
 - **D.** $a_4 = 120$
- 13) Which graph represents the solution set of this system of inequalities?

$$\begin{cases} x + 2y \le 6 \\ 2x - y < -2 \end{cases}$$

Α.

C.

В.

D.

- **14)** In a given geometric sequence with *n* terms, 2 and 8 are the 2nd and 6th terms, respectively. What is the value of *n* if $32\sqrt{2}$ is the last term of the sequence?
 - **A.** 8
 - **B.** 9
 - **C.** 10
 - **D.** 11

15) Which of the following lists best describes the five complex zeros of the function $2x^5 + 3x^4 + 11x^3 + 24x^2 - 63x - 27$?

$$2x^5 + 3x^4 + 11x^3 + 24x^2 - 63x - 27$$

- A. Three rational, two nonreal
- **B.** Two rational, one irrational, two nonreal
- C. One rational, two irrational, two nonreal
- **D.** One rational triple root, two irrational
- **16)** What is the solution set for $|2x + 9| \ge 3$?
 - **A.** [3,∞)
 - **B.** $(-\infty, -6] \cup [-3, \infty)$
 - **C.** $(-\infty,3] \cup [6,\infty)$
 - **D.** [-6,-3]
- 17) At a hot dog eating contest, Kyra can steadily eat a hot dog every 15 seconds. Alan is a little slower; at his steady pace, he can eat one every 18 seconds. How long will it take the team of Kyra and Alan to polish off a plate of 22 hot dogs?
 - **A.** 2 min
 - B. 2 min 30 sec
 - **C.** 3 min
 - D. 3 min 30 sec
- **18)** Consider the functions $f(x) = 3\sqrt{\frac{x}{2}}$ and $g(x) = 4x^2$. Find and simplify $(g \circ f)(x)$ for x > 0.
 - **A.** $\frac{4}{3}\sqrt{\frac{x^3}{8}}$
 - **B.** $3\sqrt{2}x$
 - **C.** $12x^2\sqrt{\frac{x}{2}}$
 - **D.** 18*x*

19) What is the standard form of the equation $25x^2 + y^2 + 100x - 2y + 76 = 0$?

A.
$$(x+2)^2 + \frac{(y-1)^2}{5} = 1$$

B.
$$(x+2)^2 + \frac{(y+1)^2}{5} = 1$$

C.
$$(x+2)^2 + \frac{(y-1)^2}{25} = 1$$

D.
$$(x+2)^2 + \frac{(y+1)^2}{25} = 1$$

- **20)** Let m and n be real numbers. Find the real and imaginary parts of (3 + mi)(n 2i).
 - **A.** Real: (3n 2m); Imaginary: (6 mn)i
 - **B.** Real: (3n 2m); Imaginary: (mn 6)i
 - **C.** Real: (3n + 2m); Imaginary: (mn 6)i
 - D. Real: 3n; Imaginary: 2mi

Reference Sheet for the QualityCore™ Algebra II End-of-Course Assessment

Equations of a Line

Standard Form Ax + By = C A, B, and C are constants with A and B not

Slope-Intercept Form y = mx + b both equal to zero. (x_1, y_1) is a point.

Point-Slope Form $y - y_1 = m(x - x_1)$ m = slope b = y-intercept

Quadratics

Standard Form of a $ax^2 + bx + c = 0$ a, b, and c are constants, where $a \neq 0$.

Quadratic Formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Conic Sections

Quadratic Equation

Circle $(x - h)^2 + (y - k)^2 = r^2$ center (h,k) r = radius

Parabola $y = a(x - h)^2 + k$ axis of symmetry x = h vertex (h,k) directrix $y = k - \frac{1}{4a}$ focus $\left(h, k + \frac{1}{4a}\right)$

Parabola $x = a(y - k)^2 + h$ axis of symmetry y = k vertex (h,k) directrix $x = h - \frac{1}{4a}$ focus $(h + \frac{1}{4a}, k)$

Ellipse $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ foci $(h \pm c, k)$ where $c^2 = a^2 - b^2$, center (h,k)

Ellipse $\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$ foci $(h, k \pm c)$ where $c^2 = a^2 - b^2$, center (h,k)

Hyperbola $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ foci $(h \pm c, k)$ where $c^2 = a^2 + b^2$, center (h,k)

Hyperbola $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$ foci $(h, k \pm c)$ where $c^2 = a^2 + b^2$, center (h,k)

Lines and Points

Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$ (x_1, y_1) and (x_2, y_2) are 2 points.

Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ M = midpoint d = distance

Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Miscellaneous

Distance, Rate, Time D = rt D = distance

Simple Interest I = prt r = rate t = time

Compound Interest $A = p\left(1 + \frac{r}{n}\right)^{nt}$ I = interest p = principal

A = amount of money after t yearsn = number of times interest is compounded annually

Pythagorean Theorem $a^2 + b^2 = c^2$ a and b = legs of right triangle

c = hypotenuse

Laws of Sines and Cosines

Law of Sines $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

Law of Cosines $a^2 = b^2 + c^2 - 2bc \cos A$

Sequences, Series, and Counting

Arithmetic Sequence $a_n = a_1 + (n-1)d$ $a_n = n^{th}$ term

Arithmetic Series $s_n = \frac{n}{2}(a_1 + a_n)$ n = number of the term d = common difference

Geometric Sequence $a_n = a_1(r^{n-1})$ $s_n = \text{sum of the first } n \text{ terms}$

Geometric Series $s_n = \frac{a_1 - a_1 r^n}{1 - r}$ where $r \neq 1$ r = common ratio k = number of objects in the set

Combinations ${}_{k}C_{m} = C(k,m) = \frac{k!}{(k-m)! \ m!} \qquad m = \text{number of objects selected}$

Permutations ${}_{k}P_{m} = P(k,m) = \frac{k!}{(k-m)!}$

Circumference, Area, and Volume

Triangle $A = \frac{1}{2}bh$ A = area b = base

Parallelogram A = bh h = height

Trapezoid $A = \frac{1}{2}(b_1 + b_2)h$ r = radius

Circle $A = \pi r^2$ C = circumference

rcie $A = \pi r^{-}$ d = diameter $C = \pi d$ V = volume

General Prism V = Bh B = area of base

 $\pi \approx 3.14$ Right Circular Cylinder $V = \pi r^2 h$

Pyramid $V = \frac{1}{3}Bh$

Right Circular Cone $V = \frac{1}{3}\pi r^2 h$

Sphere $V = \frac{4}{3}\pi r^3$

Answer Key

- 1) B
- 2) C
- 3) A
- 4) A
- 5) С
- 6) В
- 7) A
- С 8)
- D 9)
- 10) C
- 11) D
- 12) В
- 13) В
- 14) D
- С 15)
- 16) В
- С 17)
- 18) D
- С 19)

С

20)