Feb 10, 2023 Warm-Up

Probability Practice:

1) What is the probability that a child in U.S. is raised in a single-parent home?
2) What percent of the U.S. population identifies as black?
3) What percent of K-12 teachers are men?
4) What is the probability that a randomly selected K-12 teacher is male, given that the teacher selected teaches in an elementary school?
5) What is the probability that a randomly selected teacher is a black male, given that they teach K-12?
6) What is the probability that a randomly selected K-12 teacher is a black, given that they identify as male?

Probability Practice:

1) What is the probability that a child in U.S. is raised in a single-parent home? $S=$ child raised in single - parent $P($ child raised in single - parent) $P(S)=0.34$ or approximately 34%
2) What percent of the U.S. population identifies as black? $P($ black in U.S. $)=0.14$ or approximately 14%
3) What percent of K -12 teachers are men? $\mathrm{M}=\mathrm{K}$-12 Male

$$
P(K-12 \text { male teachers })=0.26 \text { or about } 26 \%
$$

4) What is the probability that a K-12 teacher is male, given that he teaches in an elementary school?

$$
P(M \mid \text { in elem. school })=0.17
$$

5) What is the probability that a teacher is black male, given that they teach in K-12? BM = identifies as Black male

$$
P(B M \mid \text { teach in } K-12)=\mathbf{0 . 0 2} \text { or about } \mathbf{2 \%}
$$

6) What is the probability that a randomly selected teacher is a black man, given that the K-12 teacher is male?

$$
\begin{gathered}
P(B M \mid \text { male K12 teacher })=\frac{P(B M \cap \text { male })}{P(\text { male K12 teacher })} \\
P(B M \mid \text { male } K 12 \text { teacher })=\frac{0.02}{0.26}=\mathbf{0 . 0 7 6 9}
\end{gathered}
$$

Therefore, when you consider the proportion of ALL K-12 teachers that are men, then black men are not underrepresented as compared to this given population.
S = child in U.S. is raised in a single-parent home

$$
\begin{gathered}
P(S)=0.34 \\
P(S \mid \text { White family })=? \\
P(S \mid \text { Asian family })=? \\
P(S \mid \text { Black family })=? \\
P(S \mid \text { Hispanic family })=? \\
P(S \mid \text { Mixed race })=?
\end{gathered}
$$

$$
\begin{gathered}
P(S)=0.34 \\
P(S \mid \text { White family })=0.24 \\
P(S \mid \text { Asian family })=0.16 \\
P(S \mid \text { Black family })=0.64 \\
P(S \mid \text { Hispanic family })=0.42 \\
P(S \mid \text { Mixed race })=0.28
\end{gathered}
$$

