Chapter 4. Numerical Methods for
Distributions of Data

Interpreting Center & Variability in a Distribution

Adapted fromStatistics and Data Analysis, 51" edition - For AP*
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Warm-UP: Nov 3, 2021

= 1. What is meant by the statement: “Sara is in
the 84" percentile of heights for girls of the
same age”?

= 2. Define the standard deviation of a sample.

= 3. What are the three common measures of
position for observations in a data set?

m 4. What I1s normal? What i1s a Normal
distribution?



Warm-UP: Nov, 2020

1. “Sara is in the 84" percentile of heights”
means that she is as tall or taller than 84
percent of the girls her same age.

2. Define the standard deviation of a sample:

s, = sample standard deviation
A statistic that measures the typical distance
from the mean for values (observations) in a
distribution. It is calculated by finding the
“average” of the squared distances, and then
taking the square root




3. What are the three common measures
of position for observations in a data set?

1. Percentiles

2. Quatrtiles

3. Standard scores (or z-scores)
Note: a z-score (or standard score) is a measure of position
for an observation within a data set that provides a

“standardized” measure of distance and direction in relation to
The mean of the data, in terms of standard deviation



Warm-UP: Nov, 2021

3. Normal is what you are accustomed to experiencing. Maybe
eating eggs and bacon every morning is “normal” for you.
Maybe you normally eat cereal with almond milk. Maybe
normal breakfast is a bowl of rice and fried fish.

A Normal distribution is the commonly referred parametric
distribution in statistics. It is symmetric, bell-shaped, and has
equivalent measures of center (mean = median= mode). Every
Normal distribution is clearly defined by the value of it's mean

and its standard deviation.




Modeling Distributions of Data

Describing Location in a Distribution
Density Curves

Normal Distributions

The Empirical Rule

Calculating z Scores



Section 4.4
Describing Location in a Distribution

Learning Objectives

After this section, you should be able to...

v MEASURE position using percentiles
v MEASURE position using z-scores
v TRANSFORM data (z-scores)

v DEFINE and DESCRIBE density curves
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Measuring Position: Percentiles

One way to describe the location of a value in a distribution
IS to tell what percent of observations are less than it.
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The p‘h percentile is interpreted as the value
that has p% of the data less than or equal to it.
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Jenny earned a score of 86 on her test. How did she perform
relative to the rest of the class?
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Her score was greater than 21 of the 25
observations. Since 21 of the 25, or 84%, of the
scores are below hers, Jenny is at the 84"
percentile in the class’s test score distribution.
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Definition 1

as the
lowest score that Is greater than 65% of the
scores




Measuring Position: Z-Scores

A z-score tells us how many standard deviations from the
mean an observation falls, and in what direction.

Definition:

If X IS an observation from a distribution that has known mean
and standard deviation, the standardized value of x is:

X —IMean

z =
standard deviation

A standardized value is often called a z-score.

Jenny earned a score of 86 on her test. The class mean is 80
and the standard deviation is 6.07. What is her standardized
score?
X —mean 86 — &80
z= — = =0.99
standard deviation 6.07
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Using z-scores for Comparison

We can use z-scores to compare the position of individuals in
different distributions.

Jenny earned a score of 86 on her statistics test. The class mean was
80 and the standard deviation was 6.07. She earned a score of 82
on her chemistry test. The chemistry scores had a fairly symmetric
distribution with a mean 76 and standard deviation of 4. On which
test did Jenny perform better relative to the rest of her class?

86 — 80 - 82-76

— Z
Zstats 607 chem 4
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obsev.—mean
S.D.

Z-score WS practice: z =

1. A normal distribution of scores has a standard deviation of 10.
Find the z-scores corresponding to each of the following values:

a) A score that is 20 points above the mean.
b) A score that is 10 points below the mean.
c) A score that is 15 points above the mean

d) A score that Is 30 points below the mean.



obsev.—mean
S.D.

Z-score WS practice: z =

The Welcher Adult Intelligence Test Scale is composed of a number
of subtests. On one subtest, the raw scores have a mean of 35 and
a standard deviation of 6. Assuming these raw scores form a
normal distribution:
a) What number represents the 65" percentile (what number
separates the lower 65% of the distribution)?

Percentile Quartile Z-score

65t > but < ?



Density Curves

In Chapter 1, we developed a kit of graphical and numerical
tools for describing distributions. Now, we’ll add one more step
to the strategy.

| Exploring Quantitative Data

Always plot your data: make a graph.

Look for the overall pattern (shape, center, and spread) and
for striking departures such as outliers.

Calculate a numerical summary to briefly describe center
and spread.

Sometimes the overall pattern of a large number of
observations is so regular that we can describe it by a
smooth curve.
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Density Curve

Definition:

A density curve is a curve that

* is always on or above the horizontal axis, and

 has area of exactly ¥ underneath it.
A density curve describes the overall pattern of a distribution.
The area under the curve and above any interval of values on
the horizontal axis is the proportion of all observations that fall in
that interval.

)]

The overall pattern of this histogram of TN
the scores of all 947 seventh-grade X

students in Gary, Indiana, on the \
vocabulary part of the lowa Test of —

Basic Skills (ITBS) can be described J
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by a smooth curve drawn through the
tops of the bars.




Describing Density Curves

Our measures of center and spread apply to density curves as
well as to actual sets of observations.

The median of a density curve is the equal-areas point, the
point that divides the area under the curve in half.

The mean of a density curve is the balance point, at which the
curve would balance if made of solid material.

The median and the mean are the same for a symmetric density
curve. They both lie at the center of the curve. The mean of
a skewed curve is pulled away from the median in the
direction of the long tail.

The long right tail pulls
the mean to the right
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Review of Position
Describing Location in a Distribution

In this section, we learned that...

v There are two ways of describing an individual’'s location within a
distribution — the percentile and z-score..

v Itis common to transform data, especially when changing units of
measurement. Transforming data can affect the shape, center, and

spread of a distribution.

v We can sometimes describe the overall pattern of a distribution by a
density curve (an idealized description of a distribution that smooths
out the irregularities in the actual data).



Looking Ahead...

In the next Section...

WEe'll learn about one particularly important class of
density curves — the Normal Distributions

We'll learn
v'The 68-95-99.7 Rule
v'The Standard Normal Distribution
v'"Normal Distribution Calculations, and
v'/Assessing Normality



Normal Distributions (cont.)

Learning Objectives

After this section, you should be able to...

v DESCRIBE and APPLY the Empirical Rule (68-95-99.7 Rule)
v DESCRIBE the standard Normal Distribution
v PERFORM Normal distribution calculations

v ASSESS Normality



Normal Distributions

One particularly important class of density curves are
the Normal curves, which describe Normal
distributions.

All Normal curves are symmetric, single-peaked, and
bell-shaped

Any Specific Normal curve is described by giving its
mean y (“mu”) and standard deviation o (“sigma”).

Two Normal curves, showing the mean u and standard deviation o.
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Normal Distributions

Definition:

A Normal distribution is described by a Normal density curve. Any
particular Normal distribution is completely specified by two parameters:

its mean U (“mu”) and standard deviation o (“sigma”).

*The mean () of a Normal distribution is the center of the
symmetric Normal curve.

*The standard deviation (o) is the distance from the center to the
change-of-curvature points (points of inflection) on either side.

*\We abbreviate the Normal distribution with mean and
standard deviation as: N (u,0).
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Normal distributions are good descriptions for some distributions of real data.

Normal distributions are good approximations of the results of many kinds of
chance outcomes.

Most of our statistical inference procedures are based on Normal distributions.



The Empirical Rule (68-95-99.7 Rule)

Although there are many Normal curves, they all have properties
In common.

Definition: The 68-95-99.7 Rule (“The Empirical Rule”)

In the Normal distribution with mean u and standard deviation o:
*Approximately 68% of the observations fall within 10 of L.
*Approximately 95% of the observations fall within 2o of .
*Approximately 99.7% of the observations fall within 3o of L.
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The Standard Normal Distribution

All Normal distributions are the same if we measure in units
of size o from the mean p as center.

Definition:
The standard Normal distribution is the Normal distribution
with mean 0 and standard deviation 1.
If a variable x has any Normal distribution N(u,o) with mean p
and standard deviation o, then the standardized variable
X-H
Z —
O

has the standard Normal distribution, N(0O,1).
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Normal Distribution Calculations

STEP

State: Express the problem in terms of the observed variable x.

Plan: Draw a picture of the distribution and shade the area of
interest under the curve.

Do: Perform calculations.

eStandardize x to restate the problem in terms of a standard
Normal variable z.

*Use Standard Table and the fact that the total area under
the curve is 1 to find the required area under the standard
Normal curve.

Conclude: Write your conclusion in the context of the problem.
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The distribution of lowa Test of Basic Skills (ITBS) vocabulary
scores for 71 grade students in Gary, Indiana, is close to
Normal. Suppose the distribution is N(6.84, 1.55). (1, o)

Sketch the Normal density curve for this distribution.
What percent of ITBS vocabulary scores are less than 3.74?

What percent of the scores are between 5.29 and 9.94?
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1) Given a fairly symmetric distribution that
has a mean of 100 and a standard deviation of
15, what are the following z-scores:

A) for an observation that is 110
B) for an observation that is 85
C) for an observation that is 142

2) Using the information from the problem
above, what Is the value of the observation
that has a z-score: a) z= —2;b)z=1.58



Nov. 2021: Warm-UP Answers

1) Given a fairly symmetric distribution that
has a mean of 100 and a standard deviation of

15, what are the following z-scores:
X —mean

Z score = —
standard deviation
A) for an observation that is 110110 100
Z score = = 0.667
B) for an observation that is 85 15
85 — 100
Z score = 1T = —1.0

C) for an observation that is 142
142 =100

2.8
15

Z Score =



Nov. 2021: Warm-UP Answers

2) Using the information from the problem
above, what is the value of the observation

that has a z-score: a) zscore = —2
B ~x —100 —30=x — 100
-~ 15 ©ox =70

D) z score = 1.58

x —100 23.7=x —100
1.58 = 15 o x = 123.7




Standard normal Table

Probability

Tabie oy or < i e What percentile is a
probability lying below z,
Z-score of -1.857?

&

Table A Standard normal probahilities
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Standard normal Table

Table entry for = is the
probability lying below z,

Table A Standard normal probahilities

Probability
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Standard normal Table
Finding the z-score

What percentile is
equal to a z-score

of 0.677?
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Standard normal Table
Finding the percentile = z-score

Table A (Confinwed)
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The Standard Normal Table

Because all Normal distributions are the same when we
standardize, we can find areas under any Normal curve from
a single table.

Definition: The Standard Normal Table

Table A is a table of areas under the standard Normal curve. The table
entry for each value z is the area under the curve to the left of z.

-

P(z<0.81) = .7910

Suppose we want to find the
proportion of observations from the
standard Normal distribution that are
less than 0.81.

We can use Z table (Z%):

Table entry for z
is always the area
under the curve
to the left of z.

Table entry = 0.7910
for z = 0.81.
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Z .00 0 02
0.7 7580 7642
0.8 7881 | .7910 | .7939
0.9 8159 | .8186 | .8212 = T




Finding Areas Under the Standard Normal Curve

Find the proportion of observations from the
standard Normal distribution that are between -1.25
and 0.81.
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Finding Areas Under the Standard Normal Curve

Find the proportion of observations from the standard Normal distribution that
are between -1.25 and 0.81.

Area to left of { Area to left of ] [%}rca between z = —1.25 and z = 0.81 j

Z=0.81i8 0.7910 Z=-1.2518 0.1056. 0.7910 — 0.1056 = 0.6854.

] T T
“3 =2 =t 0 T & 3 -3 =2 =1 0 7 2 3 =5 =X =t 0 17 2

Can you find the same proportion using a different approach?

The area to the
left of z=—-1.25
i 0.105%6.

Thcharc; to the

rignt of Z = 0.81

s 0303 1 - (0.1056+0.2090) =
1-0.3146

= 0.6854
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Normal Distribution Calculations

STEP

State: Express the problem in terms of the observed variable x.

Plan: Draw a picture of the distribution and shade the area of
interest under the curve.

Do: Perform calculations.

eStandardize x to restate the problem in terms of a standard
Normal variable z.

*Use Standard Table and the fact that the total area under
the curve is 1 to find the required area under the standard
Normal curve.

Conclude: Write your conclusion in the context of the problem.
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Normal Distribution Calculations
When Tiger Woods hits his driver, the distance the ball

travels can be described by N(304, 8). What percent of 5
Tiger’s drives travel between 305 and 325 yards? g
When x =305, 7= 3% 43 ©

8 ]

é_.

325 - 304 =3

o

-]

V)

When x =325, z= 2 =2.63
( l
272 280 288 296 304]\ 312 320 \\ 328 336

X =308 X =328

min ”SW

Z=263 Z=10.13 Z=013 Z=263

Using Table A, we can find the area to the left of z=2.63 and the area to the left of z=0.13.
0.9957 — 0.5517 = 0.4440. About 44% of Tiger’s drives travel between 305 and 325 yards.




Standard Deviation Activity

Pick up the worksheet and complete all the
problems without using a calculator. Use
your mental math and estimation skills.

Be prepared to share your results.



Assessing Normality

The Normal distributions provide good models for some
distributions of real data. Many statistical inference procedures
are based on the assumption that the population is
approximately Normally distributed. Consequently, we need a
strategy for assessing Normality.

v'Plot the data.

*Make a dotplot, stemplot, or histogram and see if the graph is
approximately symmetric and bell-shaped.

v'Check whether the data follow the 68-95-99.7 rule.

«Count how many observations fall within one, two, and three
standard deviations of the mean and check to see if these
percents are close to the 68%, 95%, and 99.7% targets for a
Normal distribution.
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Assessing Normality

Draw a normal density curve and determine the
values for heights that are +10, +20,and + 30
away from the mean

5’9” 6’0” 6,3” 6,6” 6’9” 7’0” 7’3”



Section 4.5
Normal Distributions

In this section, we learned that...

v The Normal Distributions are described by a special family of bell-
shaped, symmetric density curves called Normal curves. The mean
u and standard deviation o completely specify a Normal distribution
N(M,0). The mean is the center of the curve, and ¢ is the distance
from u to the change-of-curvature points on either side.

v All Normal distributions obey the 68-95-99.7 Rule, which describes
what percent of observations lie within one, two, and three standard
deviations of the mean.



Summary of
Normal Distributions

In this section, we learned that...

v All Normal distributions are the same when measurements are
standardized. The standard Normal distribution has mean p=0
and standard deviation o=1.

v Standard Normal Table gives percentiles for the standard Normal
curve. By standardizing, we can use Table A to determine the
percentile for a given z-score or the z-score corresponding to a given
percentile in any Normal distribution.

v To assess Normality for a given set of data, we first observe its
shape. We then check how well the data fits the 68-95-99.7 rule. We
can also construct and interpret a Normal probability plot.



