Chapter 7

Random Variables

\&

Probability Distributions

Warm-UP

1) What, if anything, is the difference in these variables from the following examples?
A) $3 x-4=16$
B) $3 x-4 \leq 16$
C) $3 x-4 y=16$
2) Use the information to create normal distributions distributions based on the summary statistics:

$$
\begin{aligned}
& \text { Set A: } n=24 ; \bar{x}=69, s_{x}=12.2, \\
& \text { Set B: } n=22 ; \bar{x}=62.8, s_{x}=15.7
\end{aligned}
$$

Warm-UP

Variables are symbols that represent some unknown quantity, but the unknown can take on different values depending upon the situation:
A) $3 x-4=16$; Here the unknown x, is simply a single value
B) $3 x-4 \leq 16$; Here the unknown x, actually varies, taking on a range of values
C) $3 x-4 y=16$; Here there are 2 unknowns, x and y, that have an infinite number of values, related to each other based upon a defined rule

Warm-Up

Use the information to create normal distributions distributions based on the summary statistics:

$$
\text { Set } A: n=24 ; \bar{x}=69, s_{x}=12.2,
$$

Set B: $n=22 ; \bar{x}=62.8, s_{x}=15.7$

Normal Distribution

Set A: $n=24 ; \bar{x}=69, s_{x}=12.2$

7.1: Random Variables

A numerical variable whose value depends on the outcome of a chance experiment is called a random variable. A random variable associates a numerical value with each outcome of a chance experiment.

Discrete and Continuous Random Variables

A random variable is discrete if its set of possible values is a collection of isolated points on the number line (usually integers).

Possible values of a discrete random variable

Possible values of a continuous random variable
A random variable is continuous if its set of possible values includes an entire interval on the number line.

We will use lowercase letters, such as x and y, to represent random variables.

Examples

1. Experiment: A fair die is rolled Random Variable: The number on the up face Type: Discrete
2. Experiment: A pair of fair dice are rolled Random Variable: The sum of the up faces Type: Discrete

Examples

3. Experiment: A coin is tossed until the $1^{\text {st }}$ head turns up Random Variable: The number of the toss that the $1^{\text {st }}$ head turns up
Type: Discrete
4. Experiment: Choose and inspect a specified size for a manufactured part
Random Variable: The difference in length (mm) of the part compared to its prescribed optimum.
Type: Continuous

Examples

5. Experiment: Inspect the precision of Primary mirror (Hubble Telescope) Random Variable: The number of defects on the surface of the mirror
Type: Discrete (strictly a count)
6. Experiment: Inspect the precision of Primary mirror (Hubble Telescope)
Random Variable: Percentage Variation in amount of curvature compared to optimum
Type: Continuous (limit of measurement is strictly dependent on precision of tools)

Examples

7. Experiment: Measure the voltage in a outlet in your room
Random Variable: The voltage
Type: Continuous
8. Experiment: Observe the amount of time it takes a bank teller to serve a customer
Random Variable: time in minutes
Type: Continuous

Examples

9. Experiment: Measure the time until the next customer arrives at a customer service window
Random Variable: The time
Type: Continuous
10. Experiment: Inspect a randomly chosen circuit board from a production line
Random Variable:
1, if the circuit board is defective
0 , if the circuit board is not defective
Type: Discrete

Common Distributions for Statistics

Discrete Distributions

- Binomial Distributions
- Geometric Distributions
- Poission Distributions (future stats classes)

Continuous Distributions

- Normal Distributions
- Chi-Square Distributions
- Student's t Distributions (t Distributions)

Notation for Random Variables

- For a probability $P\left(\begin{array}{ll}X & \leq\end{array}\right)$, what do x and X mean here?

A chosen constant

- Consider X to be the random variable which represents the outcome of a single roll of a die, so that X can take on values of $\{1,2,3,4,5,6\}$
- $P(X \leq 2)$ means what is the probability that the outcome will be 1 or 2 .
- $P(X \leq 5)$ means what is the probability that the outcome will be $1,2,3,4$, or 5 .

Notation: In general $P(X \leq x)$

...means the probability that the random variable X is less than or equal to the realization x.
Our textbook might show the following: Given two common dice, the random variable is the sum of the two dice $\{2,3,4,5,6,7,8,9,10,11,12\}$
What is the probability that the sum is six or less?

$$
P(X \leq 6)=p(x \leq 6)
$$

What is the probability that the sum is 9 ?

$$
P(X=9) \text { or } p(x=9) \text { or } p(9)
$$

7.2: Probability Distributions for Discrete Random Variables

The probability distribution of a discrete random variable \mathbf{x} gives the probability associated with each possible x value.

Each probability is the limiting relative frequency of occurrence of the corresponding x value when the experiment is repeatedly performed (LOLn).

Roll	1	2	3	4	5	6
$p=$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
$p=$	0.167	0.167	0.167	0.167	0.167	0.167

Example

Suppose that 20% of the apples sent to a sorting line are Grade A. If 3 of the apples sent to this plant are chosen randomly, determine the probability distribution of the number of Grade A apples in a sample of 3 apples.

Consider the tree diagram

$.2-\mathrm{A} \underset{.8}{\stackrel{.2}{-}} \mathrm{A}^{\mathrm{C}}$	$\begin{aligned} & .2 \bullet .2 \bullet .2=.008 \\ & .2 \bullet .2 \bullet .8=.032 \end{aligned}$	3 2
.2 $\mathrm{A} \quad .8 \mathrm{~A}^{\mathrm{C}} \underset{8}{\stackrel{.2}{8}-A^{C}}$	$\begin{aligned} & .2 \bullet .8 \bullet .2=.032 \\ & .2 \bullet .8 \bullet .8=.128 \end{aligned}$	1
	$.8 \bullet .2 \bullet .2=.032$	2
$.8 \wedge_{\mathrm{AC}} \quad .2 \mathrm{~A} \xlongequal[.8]{ } \mathrm{Ac}^{\mathrm{C}}$. $8 \cdot .2 \bullet .8=.128$	1
. 2 A	. $8 \cdot .8 \bullet .2=.128$	1
$.8 \mathrm{~A}^{\mathrm{C}}<{ }^{\text {c }} 8 \mathrm{~A}^{\mathrm{C}}$	$.8 \bullet .8 \bullet .8=.512$	0

The Results in Table Form

\mathbf{x}	$\mathbf{p}(\mathbf{x})$			
0	$1(.8)^{3}$			
1	$3(.8)^{2}(.2)^{1}$			
2	$3(.8)^{1}(.2)^{2}$			
3	$1(.2)^{3}$	\quad	\mathbf{x}	$\mathbf{p}(\mathbf{x})$
:---:	:---:			
0	0.512			
1	0.384			
2	0.096			
3	0.008			

Results in Graphical Form (Probability Histogram)

Probabilty Histogram

For a probability histogram, the area of a bar is the probability of obtaining that value associated with that bar.

Properties of Discrete Probability Distributions

The probabilities p_{i} must satisfy

$$
\begin{aligned}
& \text { 1. } 0 \leq \mathrm{p}_{i} \leq 1 \text { for each } i \\
& \text { 2. } \mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{k}}=1
\end{aligned}
$$

The probability $P(X$ in $A)$ of any event is found by summing the p_{i} for the outcomes x_{i} making up A.

Example

The number of items a given salesman sells per customer is a random variable. The table below is for a specific salesman (Wilbur) in a clothing store in the mall. The probability distribution of X is given below:

x	0	1	2	3	4	5	6
$p(x)$	0.20	0.35	0.15	0.12	0.10	0.05	0.03

Note: $0 \leq p(x) \leq 1$ for each x

$$
\Sigma p(x)=1(\text { the sum is over all values of } x)
$$

Example - continued

x	0	1	2	3	4	5	6
$p(x)$	0.20	0.35	0.15	0.12	0.10	0.05	0.03

The probability that he sells at least three items to a randomly selected customer is

$$
P(X \geq 3)=0.12+0.10+0.05+0.03=0.30
$$

The probability that he sells at most three items to a randomly selected customer is

$$
P(X \leq 3)=0.20+0.35+0.15+0.12=0.82
$$

The probability that he sells between (inclusive) 2 and 4 items to a randomly selected customer is

$$
P(2 \leq X \leq 4)=0.15+0.12+0.10=0.37
$$

Probability Histogram

A probability histogram has its vertical scale adjusted in a manner that makes the area associated with each bar equal to the probability of the event that the random variable takes on the value describing the bar.

Probability Histogram

The Chuck-a-LUCK Game

Costs $\$ 1$ to play Dice game of chance Pick any number from 1 to 6 . Roll the three dice.

If you chosen number comes up, you WIN! If your number comes up 1 time $=\$ 1$ If your number comes up twice $=\$ 2$ If your number comes up thrice $=\$ 3$

Is this a fair game? What is the expected value?

The Chuck-a-LUCK Game

Costs $\$ 1$ to play Dice game of chance
Pick any number from 1 to 6 . Roll the three dice We must define the random variable ... X is?
\boldsymbol{X} : the number of occurrences of my chosen number (1 to 6) on the dice

Now, create a probability table...

\mathbf{X}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathrm{P}(\mathrm{X})$				

The Chuck-a-LUCK Game

What are the probabilities of the table?

Is this a valid probability distribution?

$$
\begin{gathered}
\mathrm{P}(X)=P\left(x_{1}\right)+P\left(x_{2}\right)+P\left(x_{3}\right)+\cdots+P\left(x_{n}\right)=1 \\
P(X)=\frac{125}{216}+\frac{25}{216}+\frac{5}{216}+\frac{1}{216} \stackrel{?}{\Rightarrow} 1
\end{gathered}
$$

The Chuck-a-LUCK Game

What are the probabilities of the table?

What is the Expected Value $E(X)$ or μ_{x} ?

$$
\begin{gathered}
E(X) \text { or } \mu_{x}=\sum x \cdot p(x) \\
E(X)=0 \cdot \frac{125}{216}+1 \cdot \frac{75}{216}+2 \cdot \frac{15}{216}+3 \cdot \frac{1}{216}=0.5
\end{gathered}
$$

NEXT TOPICS

Chapter 7.3 Continuous Random Variables \square
Chapter 7.4 Transforming and Combining Random Variables
Chapter 7.5 Binomial and Geometric Random Variables

The HOME stretch!

