What are the different types of numbers?

- How many "number families" do you know?
- Can you define them and give examples?
- We group numbers into families, and describe these families in relation to where they "live" among other numbers

• Where is Louisville?

Jefferson County

• Where is Jefferson County?

Where is Kentucky?

United States, USA, North America

I live in...

United States

Kentucky

Jefferson Co.

Louisville

What are the first numbers children learn?

Natural numbers or counting numbers

1 2 3 4 5 ...

How are math teachers' children taught to count?

Whole Numbers

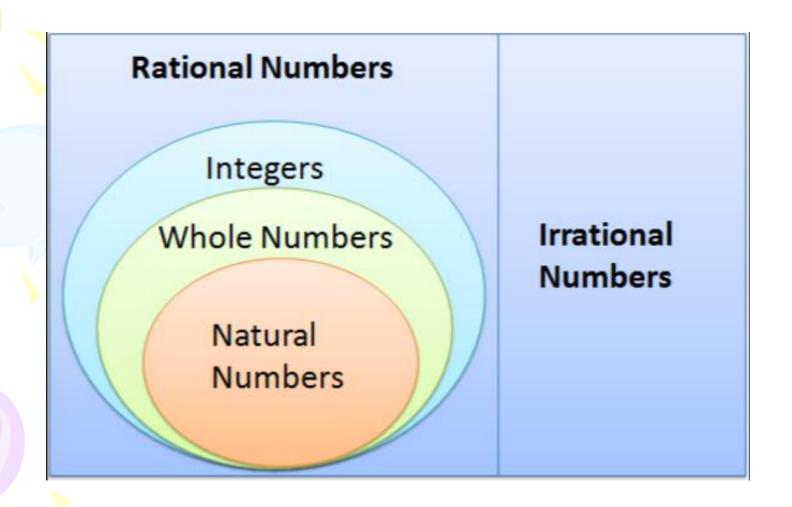
Natural numbers or counting numbers

O and 1 2 3 4 5 ...

What happens when you *subtract* any two **whole numbers**?

$$5 - 2 = 3$$

But 2 - 5 = -3


Integers

Whole Numbers

Natural numbers or counting numbers

...-4,-3,-2,-1, 0, 1, 2, 3, 4, 5 ...

Real Numbers (R)

Number Types Song

Link:

https://www.youtube.com/watch?v= m94WTZP14SA

Integers: Comparing and Ordering

Evaluation Questions

What are rational numbers?

Rational numbers are a subset of the real numbers, and include any number that can be put in the form of

 $\frac{a}{b}$ where both a and b are <u>integers</u>

 How do we compare and order rational numbers?

Rational Numbers

Rational Numbers

Integers

Fractions/Decimals

Whole Numbers (Positive Integers)

Negative Integers

Whole Numbers

Positive numbers that (in simplest form)
 are not fractions or decimals.

Can you convert whole numbers into *fractions* or decimals?

ABSOLUTELY!

2 as fraction is $\frac{2}{1}$ and as a decimal is 2.0

20tes!


<u>Integers</u>

The set of whole numbers and their opposites (or additive inverses).

201881

Positive Integers

Integers greater than zero.

20tes/

Negative Integers

Integers less than zero.

Comparing Integers

 The further a number is to the right on the number line, the greater it's value.

-1 is on the right of -3, so it is the greatest.

Comparing Integers

 The farther a number is to the right on the number line, the greater it's value.

2 is on the right of -5, so it is the greatest.

Comparing Integers

 The farther a number is to the right on the number line, the greater it's value.

0 is on the right of -2, so it is the greatest.

20tes/

Ordering Integers

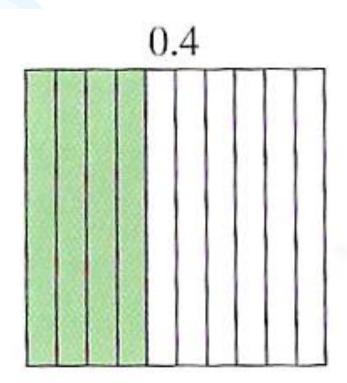
When ordering integers from <u>least to</u> <u>greatest</u> follow the order on the number line from <u>left to right</u>.

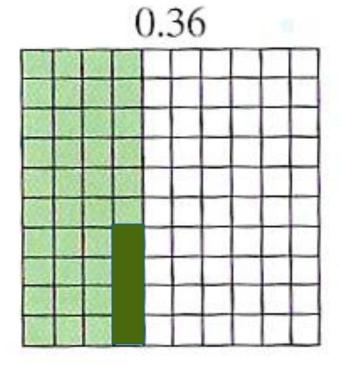
Ex: 4, -5, 0, 2

Least to greatest: -5, 0, 2, 4

20tes/

Ordering Integers

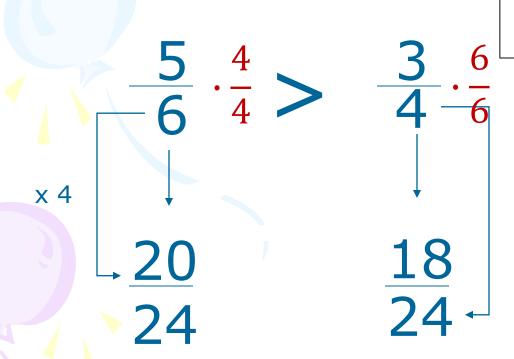

When ordering integers from <u>greatest</u> to <u>least</u> follow the order on the number line from <u>right to left</u>.


Ex: -4, 3, 0, -1

Greatest to least: 3, 0, -1, -4

Using Models

 If you are comparing tenths to hundredths, you can use a tenths grid and a hundredths grid. Here, you can see that 0.4 is greater than 0.36.

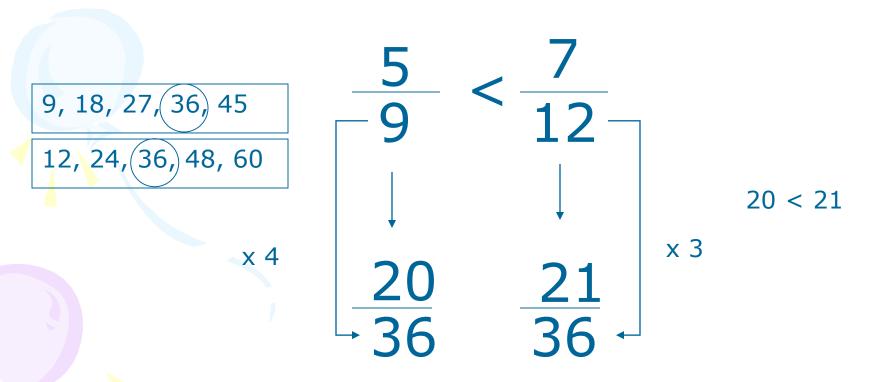


Comparing Fractions Strategy

- If the denominators are the same, how can you compare them?
- Compare the numerators.
- •If the denominators are *not the same*, then rewrite the fractions using a common denominator.
- The new fractions should be equivalent to the original fractions.

Writing Equivalent Fractions

 One way to find a common denominator is to multiply the two original denominators.


BIG IDEA: What did you multiply each fraction by?

$$6 \times 4 = 24$$

x 6

BIG IDEA: You multiply each fraction by a form of **1**

- Another way to compare fractions is to find the LCM of both denominators.
- Use the LCM as the new denominator in the equivalent fractions.

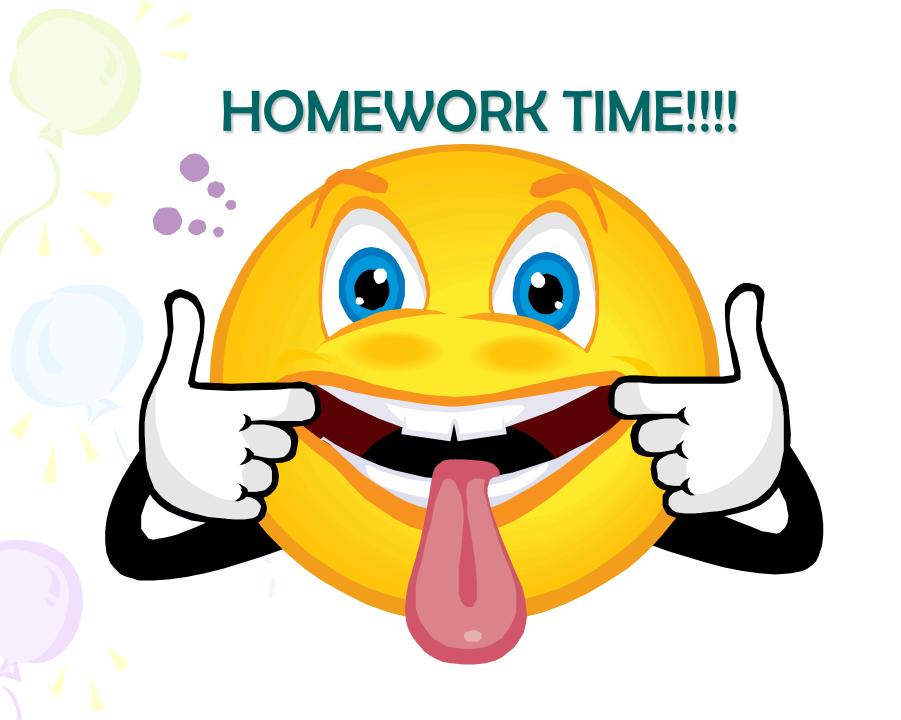
Ordering Fractions

- Find the LCM of the denominators.
- Use the LCM to write equivalent fractions.
- Put the fractions in order using the numerators.

Example - Order from Least to Greatest:

Sum of zero, product of one

Additive Inverse


Additive inverse is also known as negative of a number.

For any rational number a/b, a/b+(-a/b)= (-a/b)+a/b = 0
Therefore, -a/b is the additive inverse of a/b and a/b is
the

Additive Inverse of (-a/b).

Reciprocal

Rational number c/d is called the reciprocal or
 Multiplicative Inverse of another rational number a/b if a/b * c/d = 1

