Stats & Probability Sept 3rd, 2015

Stats Notes Stem & Leaf Plots Measures of Center

Stemplots (Stem-and-Leaf Plots)

 Another simple graphical display for small data sets is a stemplot. Stemplots give us a quick picture of the distribution while including the actual numerical values.

How to Make a Stem plot

1) Separate each observation into a **stem** (all but the final digit) and a **leaf** (the final digit).

2) Write all possible stems from the smallest to the largest in a vertical column and draw a vertical line to the right of the column.

- 3) Write each leaf in the row to the right of its stem.
- 4) Arrange the leaves in increasing order out from the stem.
- 5) Provide a key that explains in context what the stems and leaves represent.

Stemplots (Stem-and-Leaf Plots)

 These data represent the responses of 20 female AP Statistics students to the question, "How many pairs of shoes do you have?" Construct a stemplot.

	50	26	26	31	57	1	9	24	22	23	38				
	13	50	13 34		23	30		49	13	15	51				
_			_												
1		1		1	333	359		Key: 4 9							
2		2	6642	33		2	233	3466		•	represents a female student				
3		3	3 1840				014	48		who	who reported having 49 pairs of shoes.				
4		4	4 9				9								
5		5	0701			5	00 ⁻	17		pan					
Stems	ns Add leaves			S		Ord	der le	aves		Add a key					

- Splitting Stems and Back-to-Back Stemplots
 - When data values are "bunched up", we can get a better picture of the distribution by splitting stems.
 - Two distributions of the same quantitative variable can be compared using a **back-to-back stemplot** with common stems.

Disp

Females													IVIa	les					a	
50	26	26	31	57	19	24	22	23	38	14	7	6	5	12	38	8	7	10	10	Vir
13	50	13	34	23	30	49	13	15	51	10	11	4	5	22	7	5	10	35	7	μ μ

Quantitative Data **Females** Males "split stems" Key: 4|9 represents a student who reported having 49 pairs of shoes.

Measuring Center: The Mean

 The most common measure of center is the ordinary arithmetic average, or **mean**.

Definition:To find the mean \overline{x} (pronounced "x-bar") of a set of observations, add
their values and divide by the number of observations. If the *n*
observations are $x_1, x_2, x_3, \dots, x_n$, their mean is: $\overline{x} = \frac{\text{sum of observations}}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$

In mathematics, the capital Greek letter Σ (Sigma) is short for "add them all up." Therefore, the formula for the mean can be written in more compact notation:

$$\overline{x} = \frac{\sum x_i}{n}$$

• Measuring Center: The Median

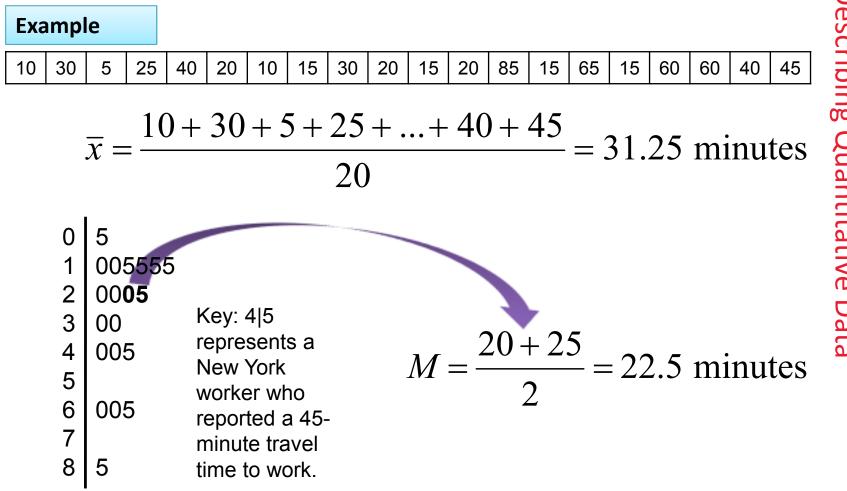
Another common measure of center is the median. In section 1.2, we learned that the median describes the midpoint of a distribution.

Definition:

The **median M** is the midpoint of a distribution, the number such that half of the observations are smaller and the other half are larger.

To find the median of a distribution:

1) Arrange all observations from smallest to largest.


2) If the number of observations *n* is odd, the median *M* is the center observation in the ordered list.

3) If the number of observations *n* is even, the median *M* is the *average of the two center observations* in the ordered list.

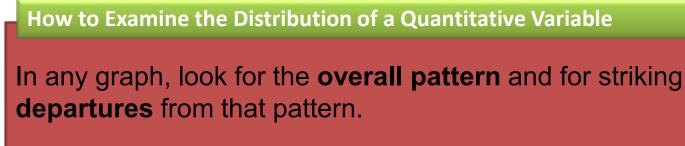
Describing Quantitative Data

Measuring Center lacksquare

 Use the data below to calculate the mean and median of the commuting times (in minutes) of 20 randomly selected New York workers.

Comparing the Mean and the Median

- The mean and median measure center in different ways, and both are useful.
- Don't confuse the "average" value of a variable (the mean) with its "typical" value, which we might describe by the median.


Comparing the Mean and the Median

The mean and median of a roughly symmetric distribution are close together.

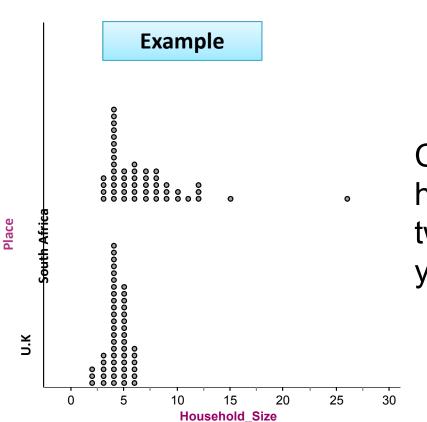
If the distribution is exactly symmetric, the mean and median are exactly the same.

In a skewed distribution, the mean is usually farther out in the long tail than is the median.

- Examining the Distribution of a Quantitative Variable
- A graph is used to help us understand the data. After you make a graph, always ask, "What do I see?"

Describe the overall pattern of a distribution by its:

•Shape •Center


Spread

Don't forget your SOCS!

Note individual values that fall outside the overall pattern. These departures are called **outliers**.

Comparing Distributions

- Some of the most interesting statistics questions involve comparing two or more groups.
- Always discuss shape, center, spread, and possible outliers whenever you compare distributions of a quantitative variable.

Compare the distributions of household size for these two countries. Don't forget your **SOCS**!