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Stats & Probability

Chapter 6

Probability
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A chance experiment is any activity or situation in 

which there is uncertainty about which of two or more 

possible outcomes will result (Not really a scientific 

research experiment, but an experiment non the less…).

The collection of all possible outcomes of a chance 

experiment is the sample space for the experiment.

6.1: Chance Experiment & Sample 

Space
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Example

An experiment is to be performed to study student 

preferences in the food line in the cafeteria. Specifically, 

the staff wants to analyze the effect of the student’s 

gender on the preferred food line (burger, salad or main 

entrée). 
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Example - continued

The sample space consists of the following six possible 
outcomes.

1. A male choosing the burger line.

2. A female choosing the burger line.

3. A male choosing the salad line.

4. A female choosing the salad line.

5. A male choosing the main entrée line.

6. A female choosing the main entrée line.

(If order is not important to the situation, could be said 
burger line chosen by a male, etc…)
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Example - continued

The sample space could be represented by using set 

notation and ordered pairs.

sample space = {(male, burger), (female, burger), (male, 

salad), (female, salad), (male, main entree), (female, 

main entree)}

If we use M to stand for male, F for female, B for burger, 

S for salad and E for main entrée the notation could be 

simplified to

sample space = {MB, FB, MS, FS, ME, FE}
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Example - continued

Yet another way of illustrating the sample 

space would be using a picture called a “tree” 

diagram.

Male

Female

Burger

Salad

Main Entree

Outcome (Male, Salad)

Outcome (Female, Burger)

Burger

Salad

Main Entree

This “tree” has two sets of “branches” corresponding to the two bits of 

information gathered. To identify any particular outcome of the sample space, 

you traverse the tree by first selecting a branch corresponding to gender and 

then a branch corresponding to the choice of food line.  (If order is not 

important to the situation, burger, salad &  entree could be 1st branch)
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Events

An event is any collection of outcomes from 
the sample space of a chance experiment.

A simple event is an event consisting of 
exactly one outcome.

If we look at the lunch line example and use the following 
sample space description  {MB, FB, MS, FS, ME, FE}

The event that the student selected is male is given by     

male = {MB, MS, ME}

The event that the preferred food line is the burger line is given 
by    burger = {MB, FB}

The event that the person selected is a female that prefers the 
salad line is     {FS}.  This is an example of a simple event & 
there are 6 possible simple events that could occur).
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Venn Diagrams

A Venn Diagram is an informal picture that 

is used to identify relationships.

The collection of all possible outcomes of a 

chance experiment are represented as the 

interior of a rectangle.

The rectangle represents the 

sample space and shaded 

area represents the event A.
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Let A and B denote two events.

Forming New Events

The shaded area 

represents the event 

not A.

The event not A consists of all experimental 

outcomes that are not in event A. Not A is 

sometimes called the complement of A and 

is usually denoted by Ac, A’, C(A), S - A , not 

A, -A or possibly A.

The event not A consists of all experimental 

outcomes that are not in event A. Not A is 

sometimes called the complement of A and 

is usually denoted by Ac, A’, C(A), S - A , not 

A, -A or possibly A.
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Forming New Events

Let A and B denote two events.

The shaded area represents 

the event A  B.

The event A or B consists of all 

experimental outcomes that are in at least 

one of the two events, that is, in A or in B 

or in both of these. A or B is called the 

union of the two events and is denoted by 
AB.A  B
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Forming New Events

Let A and B denote two events.

The shaded area represents 

the event A  B.

The event A and B consists of all 

experimental outcomes that are in both of 

the events A and B. A and B is called the 

intersection of the two events and is 
denoted by AB.A  B
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More on intersections

Two events that have no common outcomes are said to 

be disjoint or mutually exclusive.

A and B are disjoint 

events
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More than 2 events

Let A1, A2, …, Ak denote k events

The events A1 or A2 or … or Ak consist of all 

outcomes in at least one of the individual 
events. [I.e., A1 A2 …Ak]

These k events are disjoint if no two of them have any 

common outcomes.

The events A1 and A2 and … and Ak consist 

of all outcomes that are simultaneously in 

every one of the individual events. 
[I.e., A1A2 …Ak]

[i.e. A1, A2, …, Ak]

[i.e. A1, A2, …, Ak]
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Some illustrations

A B

C

A, B & C are Disjoint

A B

C

A B

C

A B

C

A  B  C

A  B  C A  B NOT C
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Mutually Exclusive vs. 

Independent

It’s common to confuse the concepts of ME and Indep. 

If A happens, then event B cannot, or vice-versa. The 
two events "it rained on Tuesday" and "it did not rain on 
Tuesday" are mutually exclusive events. When 
calculating the probabilities for ME events you add the 
probabilities.   With respect to independence, the 
outcome of event A, has no effect on the outcome of 
event B. Such as "It rained on Tuesday" and "My chair 
broke at work". When calculating the probabilities for 
independent events you multiply the probabilities. You 
are effectively saying what is the chance of both events 
happening bearing in mind that the two were unrelated. 
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Mutually Exclusive vs. 

Independent cont…

So, if A and B are mutually exclusive, they cannot be 

independent. If A and B are independent, they 

cannot be mutually exclusive. However, If the events 

were it rained today" and "I left my umbrella at 

home" they are not mutually exclusive, but they are 

probably not independent either, because one would 

think that you'd be less likely to leave your umbrella 

at home on days when it rains. 
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Mutually Exclusive example

What happens if I have 1 die & want to throw 1 and 6 in any 
order? This now means that we do not mind if the first die is either 
1 or 6, as we are still in with a chance. But with the first die, if 1 
falls uppermost, clearly it rules out the possibility of 6 being 
uppermost, so the two Outcomes, 1 and 6, are exclusive. One 
result directly affects the other. In this case, the probability of 
throwing 1 or 6 with the first die is the sum of the two probabilities, 
1/6 + 1/6 = 1/3. 

The probability of the second die being favorable is still 1/6 as the 
second die can only be one specific number, a 6 if the first die is 1, 
and vice versa. 

Therefore the probability of throwing 1 and 6 in any order with one 
die thrown twice is 1/3 x 1/6 = 1/18. Note that we multiplied the last 
two probabilities as they were independent of each other!!! 
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Independent example

Now with 2 dice, what is the probability of throwing a one 
& a six is the result of throwing one with the first die and 
six with the second die (or visa versa). The total 
possibilities are, one from six outcomes for the first event 
and one from six outcomes for the second, Therefore 
(1/6) * (1/6) = 1/36th or 2.77%. Since order didn’t matter 
(1,6 or 6,1) it’s 2/36th as there 2 ways to get it.

The two events are independent, since whatever 
happens to the first die cannot affect the throw of the 
second, the probabilities are therefore multiplied, and 
remain 1/18th.  Same P, but different way to calculate it.

Actually, this is the P(any pair) with 2 die.
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6.2: Probability – Classical Approach

If a chance experiment has k outcomes, 

all equally likely, then each individual 

outcome has the probability 1/k and the 

probability of an event E is

number of outcomes favorable to E
P(E)

number of outcomes in the sample space

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Probability - Example

Consider the experiment consisting of rolling two 

fair dice and observing the sum of the up faces. A 

sample space description is given by

{(1, 1), (1, 2), … , (6, 6)} 

where the pair (1, 2) means 1 is the up face of the 

1st die and 2 is the up face of the 2nd die. This 

sample space  consists of 36 equally likely 

outcomes.

Let E stand for the event that the sum is 6.

Event E is given by E={(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}.

The event consists of 5 outcomes, so 5
P(E) 0.1389

36
 



21

Probability - Empirical Approach

Consider the chance experiment of rolling a 

“fair” die. We would like to investigate the 

probability of getting a “1” for the up face of the 

die. The die was rolled and after each roll the up 

face was recorded and then the proportion of 

times that a 1 turned up was calculated and 

plotted. Repeated Rolls of a Fair Die
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The process was simulated again and this time 

the result were similar. Notice that the 

proportion of 1’s seems to stabilize and in the 

long run gets closer to the “theoretical” value of 

1/6.

Probability - Empirical Approach

Repeated Rolls of a Fair Die
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In many “real-life” processes and chance 

experiments, the probability of a certain 

outcome or event is unknown, but never the 

less this probability can be estimated 

reasonably well from observation. The 

justification if the Law of Large Numbers.

Law of Large Numbers: As the number of 

repetitions of a chance experiment increases, the 

chance that the relative frequency of occurrence 

for an event will differ from the true probability of 

the event by more than any very small number 

approaches zero.

Probability - Empirical Approach
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Relative Frequency Approach

The probability of an event E, denoted by 

P(E), is defined to be the value approached 

by the relative frequency of occurrence of E 

in a very long series of trials of a chance 

experiment. Thus, if the number of trials is 

quite large,

number of times E occurs
P(E)

number of trials

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Methods for Determining Probability

1. The classical approach: Appropriate for experiments that 

can be described with equally likely outcomes.

2. The subjective approach: Probabilities represent an 

individual’s judgment based on facts combined with 

personal evaluation of other information.

3. The relative frequency approach: An estimate is based 

on an accumulation of experimental results. This estimate, 

usually derived empirically, presumes a replicable chance 

experiment.
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6.3: Basic Properties of Probability

1. For any event E, 0P(E) 1.

2. If S is the sample space for an experiment, 

P(S)=1.

3. If two events E and F are disjoint, then                

P(E or F) = P(E) + P(F).

4. For any event E,    

P(E) + P(not E) = 1 so,

P(not E) = 1 – P(E) and P(E) = 1 – P(not E).
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Equally Likely Outcomes

Consider an experiment that can result in any 

one of N possible outcomes. Denote the 

corresponding simple events by O1, O2,… On. 

If these simple events are equally likely to 

occur, then

  
1 2 N

1 1 1
1. P(O ) ,P(O ) , ,P(O )

N N N



2. For any event E,

number of outcomes in E
      P(E)

N
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Consider the experiment consisting of randomly 

picking a card from an ordinary deck of playing 

cards (52 card deck).

Let A stand for the event that the card chosen is a 

King.

Example

The sample space is given by S = 

{A, K,,2, A , K  , , 2, A,, 2, A,…, 2}

and consists of 52 equally likely outcomes.

The event is given by 

A={K, K, K, K}

and consists of 4 outcomes, so 

0.0769
13

1
  

52

4
  P(A) 
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Example

Consider the experiment consisting of rolling two fair dice 

and observing the sum of the up faces.

Let E stand for the event that the sum is 7.

The sample space is given by

S={(1 ,1), (1, 2), … , (6, 6)}

and consists of 36 equally likely outcomes.

The event E is given by 

E={(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

and consists of 6 outcomes, so 


6
P(E)

36
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Example

Consider the experiment consisting of rolling two fair dice 

and observing the sum of the up faces.

Let F stand for the event that the sum is 11.

The sample space is given by

S={(1 ,1), (1, 2), … , (6, 6)}

and consists of 36 equally likely outcomes.

The event F is given by 

F={(5, 6), (6, 5)}

and consists of 2 outcomes, so 


2

P(F)
36



Warm-UP

1) What does it mean for two events to be mutually 

exclusive?

2) What does it mean for two events to be 

independent?

3) Can events be both mutually exclusive and 

independent? 

4) A and B are independent events, and P(A) = 0.7, 

while the P(B) = 0.3. What is:

a)  P(B | A) b)  P (𝐵  𝐴 )

31



Warm-UP

1) What does it mean for two events to be mutually 

exclusive?

Two events are mutually exclusive or disjoint when they 

share no common outcomes. The complement of an 

event is always mutually exclusive from the event.

Ex: If I roll a die, the events A: rolling an odd number ; 

and B: rolling an even number are mutually exclusive.

Ex: If I roll a die, the events A: rolling an odd number ; 

and B: rolling a prime number

2)  What does it mean for two events to be independent?

32
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6.5: Independence

Two events E and F are said to be independent if the 

occurrence of one event does not effect the occurrence 

of the other event, and vice versa. When this is true, 

then P(E | F) = P(E) and  P(F | E) = P(F) .

Conversely, if events E and F are subsets of the same 

sample space, and they are not independent, they are 

said to be dependent events.



Oct 28/29 Warm-UP

1) Can events be both mutually exclusive and 

independent? 

2) A and B are independent events, and P(A) = 0.6, 

while the P(B) = 0.4. What is:

a)  P(B | A) b)  P (𝐵  𝐴 ) c) P (𝐵  𝐴 )

3) An event and its complement are __________ 

mutually exclusive.  Always Sometimes Never

4) Mutually exclusive events are ____________ 

complements of each other.

Always Sometimes Never

34



Warm-UP

1) Can events be both mutually exclusive and 

independent?  No (essentially no), because we 

typically refer to mutually exclusive events as subsets 

from the same sample space, whereas independent 

events are events from separate sample spaces

2) A and B are independent events, and P(A) = 0.6, 

while the P(B) = 0.4. What is:

a)  P(B | A) =  0.4 b)  P (𝐵  𝐴 ) =  0.6 ∙ 0.4
= 0.24

35



Warm-UP

3) An event and its complement are __________ 

mutually exclusive.  

Always Sometimes Never

3) Mutually exclusive events are ____________ 

complements of each other.

Always Sometimes Never

36
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Addition Rule for Disjoint Events

Let E and F be two disjoint events. 

One of the basic properties of probability is, 
P(E or F) = P(E F)= P(E) + P(F)

More Generally, if E1, E2 ,,Ek are disjoint, then 

P(E1 or E2 or  or Ek) = P(E1 E2 Ek)

= P(E1) + P(E2)  + P(Ek)

P(E or F) = P(E  𝐹 ) = P(E) + P(F)

P(E1  E2  … 

 Ek) 
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Example

Consider the experiment consisting of rolling two 

fair dice and observing the sum of the up faces.

Let E stand for the event that the sum is 7 and 

F stand for the event that the sum is 11.

6 2
P(E) & P(F)

36 36

Since E and F are disjoint events

6 2 8
P(E F) P(E) P(F)

36 36 36

 

    
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A Leading Example

A study1 was performed to look at the 

relationship between motion sickness and 

seat position in a bus. The following table 

summarizes the data.

1 “Motion Sickness in Public Road Transport: The Effect of Driver, Route and Vehicle” 

(Ergonomics (1999): 1646 – 1664).

Front Middle Back

Nausea 58 166 193

No Nausea 870 1163 806

Seat Position in Bus
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A Leading Example

Let’s use the symbols N, NC, F, M, B to 

stand for the events Nausea, No Nausea, 

Front, Middle and Back respectively.

Front Middle Back Total

Nausea 58 166 193 417

No Nausea 870 1163 806 2839

Total 928 1329 999 3256

Seat Position in Bus
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A Leading Example

Computing the probability that an individual 

in the study gets nausea we have

Front Middle Back Total

Nausea 58 166 193 417

No Nausea 870 1163 806 2839

Total 928 1329 999 3256

Seat Position in Bus

417
P(N) 0.128

3256
 
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A Leading Example

Other probabilities are easily calculated by 

dividing the numbers in the cells by 3256 to 

get

Front Middle Back Total

Nausea 0.018 0.051 0.059 0.128

No Nausea 0.267 0.357 0.248 0.872

Total 0.285 0.408 0.307 1.000

Seat Position in Bus

P(F)

P(N and F)

P(M and NC)

P(N)
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A Leading Example

The event “a person got nausea given 

he/she sat in the front seat” is an example of 

what is called a conditional probability.

Of the 928 people who sat in the front, 58 got 

nausea so the probability that “a person got nausea 

given he/she sat in the front seat is

58
0.0625

928

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6.4: Conditional Probability

If we want to see if nausea is related to seat 

position we might want to calculate the probability 

that “a person got nausea given he/she sat in the 

front seat.”

We usually indicate such a conditional probability 

with the notation   P(N | F).

P(N | F) stands for the “probability of N given F.
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Conditional Probability

Let E and F be two events with P(F) > 0. 

The conditional probability of the event 

E given that the event F has occurred, 

denoted by P(E|F), is

P(E F)
P(E |F)

P(F)

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6.5: Independence

Two events E and F are said to be independent if the 

occurrence of one event does not effect the occurrence 

of the other event, and vice versa. When this is true, 

then P(E | F) = P(E) and  P(F | E) = P(F) .

If E and F are not independent, they are said to be 

dependent events.

If P(E|F) = P(E), it is also true that P(F|E) = P(F) and vice 

versa.  So if E is independent of F, F is independent of 

E.
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Example

A survey of job satisfaction2 of teachers was 

taken, giving the following results

2 “Psychology of the Scientist: Work Related Attitudes of U.S. Scientists” 

(Psychological Reports (1991): 443 – 450).

Satisfied Unsatisfied Total

College 74 43 117

High School 224 171 395

Elementary 126 140 266

Total 424 354 778

Job Satisfaction

L

E

V

E

L
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Example

If all the cells are divided by the total number 

surveyed, 778, the resulting table is a table of 

empirically derived probabilities.

Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.342

Total 0.545 0.455 1.000

L

E

V

E

L

Job Satisfaction
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is the proportion of teachers who are 

college teachers and who are satisfied 

with their job.

P(C S) 0.095 is the proportion of teachers who are 

college teachers and who are satisfied 

with their job.

P(C S) 0.095

For convenience, let C stand for the event that 

the teacher teaches college, S stand for the 

teacher being satisfied and so on. Let’s look at 

some probabilities and what they mean.

is the proportion of teachers who are 

college teachers.
P(C) 0.150

is the proportion of teachers who are 

satisfied with their job.
P(S) 0.545

Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.342

Total 0.545 0.455 1.000

L

E

V

E

L

Job SatisfactionExample
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Example

Restated: This is the proportion of satisfied that are 

college teachers.

Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.342

Total 0.545 0.455 1.000

L

E

V

E

L

Job Satisfaction

The proportion of teachers who  are 

college teachers given they are satisfied is

  
P(C S) 0.095

P(C |S) 0.175
P(S) 0.545
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Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.342

Total 0.545 0.455 1.000

L

E

V

E

L

Job SatisfactionExample

Restated: This is the proportion of college 

teachers that are satisfied.

What is the proportion of teachers who  are 

satisfied given they are college teachers?

 

 

P(S C) P(C S)
P(S | C)

P(C) P(C)

0.095
0.632

0.150
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Example

Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.342

Total 0.545 0.455 1.000

L

E

V

E

L

Job Satisfaction

P(C|S)  P(C) so C and S are dependent events.

P(C S) 0.095
P(C) 0.150 and P(C | S) 0.175

P(S) 0.545
   

What is P ( C ) = ?    What is P (C | S) = ?



53

Multiplication Rule for Independent Events

The events E and F are independent if and 

only if P(E  F) = P(E) ∙ P(F)

That is, independence implies the relation 

P(E  F) = P(E) ∙ P(F), and this relation 

implies independence.
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Example

Consider the person who purchases from two 

different manufacturers a TV and a DVD. 

Suppose we define the events A and B by

A = event the TV doesn’t work properly

B = event the DVD doesn’t work properly

3 This assumption seems to be a reasonable assumption since the 

manufacturers are different.

Suppose P(A) = 0.01 and P(B) = 0.02. 

If we assume that the events A and B are 

independent3, then

P(A and B) = P(AB) = (0.01)(0.02) = 0.0002P(A and B) = P(A  B) = (0.01)(0.02) = 0.0002 
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Example

Consider the teacher satisfaction survey

Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.658

Total 0.545 0.455 1.000

L

E

V

E

L

Job Satisfaction

P(C) = 0.150, P(S) = 0.545 and P(C  S) = 0.095

Since P(C)P(S) = (0.150)(0.545) = 0.08175 and 

P(C  S) = 0.095, P(C  S)  P(C)P(S).  This 

shows that C & S are dependent events. 

0.340
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Sampling Schemes

Sampling is with replacement if, once selected, 
an individual or object is put back into the 
population before the next selection. These 
would represent  ______________ events.

Sampling is without replacement if, once 
selected, an individual or object is not returned 
to the population prior to subsequent selections. 
These would represent  ________________ 
events. 

independent

dependent
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Example

Suppose we are going to select three cards from an 
ordinary deck of cards. Consider the events:

E1 = event that the first card is a king

E2 = event that the second card is a king

E3 = event that the third card is a king.
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Example – With Replacement

If we select the first card and then place it back in 

the deck before we select the second, and so on, 

the sampling will be with replacement. 

1 2 3

4
P(E ) P(E ) P(E )

52
  

1 2 3 1 2 3
P(E E E ) P(E )P(E )P(E )

4 4 4
0.000455

52 52 52



 
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Example – Without Replacement

If we select the cards in the usual manner 

without replacing them in the deck, the 

sampling will be without replacement. 

1 2 3

4 3 2
P(E ) , P(E ) , P(E )

52 51 50
  

1 2 3 1 2 3
P(E E E ) P(E )P(E )P(E )

4 3 2
0.000181

52 51 50



 
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Example: Jury Selection

Suppose the attorneys hope for a representative jury. If 

a jury pool in a city contains 12,000 potential jurors and 

3000 of them are Hispanic. 

Consider the defined events

E1 = event that the first juror selected is Hispanic

E2 = event that the second juror selected is Hispanic

E3 = event that the third juror selected is Hispanic

E4 = event that the forth juror selected is Hispanic
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Example: Jury Selection

Clearly the sampling will be without replacement so 

1 2

3 4

3000 2999
P(E ) , P(E ) ,

12000 11999

2998 2997
P(E ) ,P(E )

11998 11997

 

 

1 2 3 4
So P(E E E E )

3000 2999 2998 2997
0.003900

12000 11999 11998 11997
 
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A Practical Example - continued

If we “treat” the Events E1, E2, E3 and E4 as being 

with replacement (independent) we would get 

1 2 3

3000
P(E ) P(E ) P(E ) 0.25

12000
   

1 2 3 4
So P(E E E E ) (0.25)(0.25)(0.25)(0.25)

0.003906




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Notice the result calculate by sampling without 

replacement is 0.003900 and the result calculated by 

sampling with replacement is 0.003906. These 

results are essentially the same. 

So, when the number of items in the population is 

large and the number in the sample is small, the two 

methods give essentially the same result.

A Practical Example - continued
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An Observation

If a random sample of size n is taken from a 
population of size N, the theoretical probabilities of 
successive selections calculated on the basis of 
sampling with replacement and on the basis of 
sample without replacement differ by insignificant 
amounts under suitable circumstances. 

Typically independence is assumed for the purposes 
of calculating probabilities when the sample size n is 
less than 5% of the population size N.
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6.6: General Addition Rule for Two 

Events

For any two events E and F,

P(E F) P(E) P(F) P(E F)  

For any two events E and F,

P(E F) P(E) P(F) P(E F)  
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6.6: General Addition Rule for Two 

Events
For any two events E and F,

P(E F) P(E) P(F) P(E F)  

For any two events E and F,

P(E F) P(E) P(F) P(E F)  

Given: A = drawing a 7 or 8

B = drawing a Club

If you draw one card

What is the P(A 𝐵) ?

What is the 𝑃 𝐴  𝐵 ?
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Example
Consider the teacher satisfaction survey

Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.658

Total 0.545 0.455 1.000

L

E

V

E

L

Job Satisfaction

P(C) = 0.150, P(S) = 0.545 and

P(C  S) = 0.095, so

P(C  S) = P(C) + P(S) – P(C  S)

= 0.150 + 0.545 – 0.095

= 0.600
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General Multiplication Rule

P(E F) P(E |F)P(F)

For any two events E and F,

From symmetry we also have

P(E F) P(F |E)P(E)
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Example

18% of all employees in a large company are 

secretaries and furthermore, 35% of the 

secretaries are male. If an employee from this 

company is randomly selected, what is the 

probability the employee will be a secretary 

and also male.

Let E stand for the event the employee is male.

Let F stand for the event the employee is a secretary.

The question can be answered by noting that 

P(F) = 0.18 and P(E|F) = 0.35 so

  P(E F) P(E |F)P(F) (0.35)(0.18) 0.063
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Bayes Rule

If B1 and B2 are disjoint events with 

P(B1) + P(B2) = 1, then for any event E

P(E|B1)P(B1)P(B1|E)
P(E|B1)P(B1)+P(E|B2)P(B2)



More generally, if B1, B2, , Bk are disjoint events with 

P(B1) + P(B2) +  P(Bk) = 1, then for any event E

i

i

1 1 2 2 k k

P(E | B )
P(B | E)

P(E | B )P(B ) P(E |B )P(B ) P(E |B )P(B )


  

More generally, if B1, B2, , Bk are disjoint events with 

P(B1) + P(B2) +  P(Bk) = 1, then for any event E

i

i

1 1 2 2 k k

P(E | B )
P(B | E)

P(E | B )P(B ) P(E |B )P(B ) P(E |B )P(B )


  

P(E|Bi)P(Bi)

Use when given P(E|B1) & you want P(B1|E)



72

Example

A company that makes radios, uses three different 

subcontractors (A, B and C) to supply on switches used 

in assembling a radio. 50% of the switches come from 

company A, 35% of the switches come from company B 

and 15% of the switches come from company C. 

Furthermore, it is known that 1% of the switches that 

company A supplies are defective, 2% of the switches 

that company B supplies are defective and 5% of the 

switches that company C supplies are defective.

Thus, we know the defective rate given a switch is from 

a specific company. 
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Example

If a radio from this company was inspected and failed 

the inspection because of a defective on switch, what 

are the probabilities that that switch came from each of 

the suppliers.  

So we want to find the probability it came from a 

specific company given the switch is defective.  This is 

the opposite of what we were given, so we use Bayes 

Rule.  



74

Example - continued

Define the events

S1 = event that the on switch came from subcontractor A

S2 = event that the on switch came from subcontractor B

S3 = event that the on switch came from subcontractor C

D = event the on switch was defective

From the problem statement we have

P(S1) = 0.5, P(S2) = 0.35 , P(S3) = 0.15

P(D|S1) =0.01, P(D|S2) =0.02, P(D|S3) =0.05
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Example - continued

P(Switch came from supplier A given it was 

defective) =

1

1

1 1 2 2 3 3

P(D | S )
P(S | D)

P(D | S )P(S ) P(D | S )P(S ) P(D | S )P(S )

(.5)(.01)

(.5)(.01) (.35)(.02) (.15)(.05)

.005 .005
.256

.005 .007 .0075 .0195


 


 

  
 

P(Switch came from supplier A given it was 

defective) =

1

1

1 1 2 2 3 3

P(D | S )
P(S | D)

P(D | S )P(S ) P(D | S )P(S ) P(D | S )P(S )

(.5)(.01)

(.5)(.01) (.35)(.02) (.15)(.05)

.005 .005
.256

.005 .007 .0075 .0195


 


 

  
 

P(D|S1)P(S1)

P(S2|D) = 

.359
Similarly, P(S2|D) = (.35)(.02)                  ,.

(.5)(.01)+(.35)(.02)+(.15)(.05)
Similarly,

P(S3|D) = (.15)(.05)                  ,.

(.5)(.01)+(.35)(.02)+(.15)(.05)

P(S3|D) = 

.385
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Example - continued

These calculations show that 25.6% of the 

defective switches are supplied by subcontractor 

A, 35.9% of the defective on switches are 

supplied by subcontractor B and 38.5% of the 

defective on switches are supplied by 

subcontractor C.

Even though subcontractor C supplies only a small 

proportion (15%) of the switches, it supplies a 

reasonably large proportion of the defective 

switches (38.9%).
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6.7: Estimating Probabilities 

Empirically & Using Simulation
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Estimating Probability Empirically 

Common to use observed long term proportions to 

estimate probabilities empirically.

• Observe large # of chance outcomes in a 

controlled environment

• Using your knowledge of long run relative 

frequencies & the law of large numbers 

estimate the probability of the observed event.
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Example 

Men & women frequently express intimacy via touch. 

Holding hands is an example.  Some researchers 

say not only does this act indicate intimacy, but may 

also indicate status differences.

Research indicates that the males predominately 

assume the overhand status, women the 

underhand… The authors of “Men & Women Holding 

Hands: Whose Hand is Uppermost” believe height 

may be the more reasonable explanation.
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Example… 

Number of hand holding couples

Gender of Person with uppermost hand

Men Women Total

Man taller 2149 299 2448

Equal Ht 780 246 1026

Woman taller 241 205 446

Total 3170 750 3920
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Example

Assuming that the reported hand holding couples are 
representative of the population of hand holding couples, 
we can estimate various probabilities, i.e

P(man’s uppermost) = 3170/3920 = 0.809

P(woman’s uppermost) = 750/3920 = 0.191

P(man taller uppermost) = 2149/2448 = 0.878 conditional

P(woman taller uppermost) = 205/446 = 0.460 conditional

So men still have the upperhand

Note:  P(man taller uppermost) ≠ P(man’s uppermost), 
therefore NOT independent events
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Estimating Probability Simulation 

When impractical to measure empirically or can’t 

measure analytically..

• Design method that uses a random mechanism 

to represent an observation.

• Generate an obs using your method & 

determine if the outcome of interest has 

occurred. Repeat a large # of times.

• Calculate the estimated probability by dividing 

the # of obs for which the outcome of interest 

occurred by the total # of obs
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Example

Lets do a simulation for the multiple choice portion of a 20 
question test with 5 choices for each question (only 1 being 
correct). Using a random # table we randomly pick a place to 
start & get the following #’s (note take 20 #’s at a time since there are 20 questions).

Since there are 5 choices & 10 possibilities for each of the 20 
digits we need 2 #’s to represent success for each of the 20 
digits (e.g. Lets let 0 & 1 be success)

Test #1: 9 4 6 0 6 9 7 8 8 2 5 2 9 6 0 1 4 6 0 5 4 correct

Test #2: 6 6 9 5 7 4 4 6 3 2 0 6 0 8 9 1 3 6 1 8 4 correct

Test #3: 0 7 1 7 7 2 9 5 4 8 6 2 7 5 1 0 4 3 0 7 5 correct

etc…


