

- Warm-Up: Letter to Future ME
- **Review measures of Center & Spread**
- SU-DO-KU? Game of Skunk?
- HW Time, Video time
- TEST review DUE Next week!
- **Questions?**

Measures of Center and spread

What are common measures of center for a numerical distribution of data?

mean & median

What common measures of spread for a numerical distribution of data?

range, interquartile range (IQR), & standard deviation

Measuring Center: The Mean

The most common measure of center is the ordinary arithmetic average, or mean.

Definition:

To find the **mean** $\overline{\chi}$ (pronounced "x-bar") of a set of observations, add their values and divide by the number of observations. If the *n* observations are x₁, x₂, x₃, ..., x_n, their mean is:

$$\overline{x} = \frac{\text{sum of observations}}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

In mathematics, the capital Greek letter Σ is short for "add them all up." Therefore, the formula for the mean can be written in more compact notation:

$$\overline{x} = \frac{\sum x_i}{n}$$

Measuring Center: The Median

Another common measure of center is the median. In section 1.2, we learned that the median describes the midpoint of a distribution.

Definition:

The **median M** is the midpoint of a distribution, the number such that half of the observations are smaller and the other half are larger.

- To find the median of a distribution:
- 1) Arrange all observations from smallest to largest.

2) If the number of observations *n* is odd, the median *M* is the center observation in the ordered list.

3) If the number of observations *n* is even, the median *M* is the average of the two center observations in the ordered list.

Measuring Center

Use the data below to calculate the mean and median of the commuting times (in minutes) of 20 randomly selected New York workers.

Comparing the Mean and the Median

- The mean and median measure center in different ways, and both are useful.
 - Don't confuse the "average" value of a variable (the mean) with its "typical" value, which we might describe by the median.

Comparing the Mean and the Median

The mean and median of a roughly symmetric distribution are close together.

If the distribution is exactly symmetric, the mean and median are exactly the same.

In a skewed distribution, the mean is usually farther out in the long tail than is the median.

<u>**Range</u>**: the spread of all the data, calculated as the difference between the largest and smallest observations in the data.</u>

Standard deviation: average or "typical" deviation from the mean for a set of data. Calculated by finding the average of the squared deviations from the mean.

Interquartile range (*IQR*) : the spread of the middle 50% of the data, calculated by difference in $Q_3 - Q_1 = IQR$

Measuring Spread: The Interquartile Range (IQR)

- A measure of center alone can be misleading.
- A useful numerical description of a distribution requires both a measure of center and a measure of spread.

How to Calculate the Quartiles and the Interquartile Range

To calculate the quartiles:

1) Arrange the observations in increasing order and locate the median *M*.

2) The **first quartile** Q_1 is the median of the observations located to the left of the median in the ordered list.

3) The **third quartile** Q_3 is the median of the observations located to the right of the median in the ordered list.

The interquartile range (IQR) is defined as:

$$IQR = Q_3 - Q_1$$