FUN Friday! Sept 2, 2022

Warm-Up: Letter to Future ME
Review measures of Center \& Spread SU-DO-KU? Game of Skunk?

HW Time, Video time
TEST review DUE Next week!
Questions?

Measures of Center and spread

What are common measures of center for a numerical distribution of data?

mean \& median

What common measures of spread for a numerical distribution of data?

range, interquartile range (IQR),
 \& standard deviation

Measuring Center: The Mean

- The most common measure of center is the ordinary arithmetic average, or mean.

Definition:

To find the mean \bar{x} (pronounced "x-bar") of a set of observations, add their values and divide by the number of observations. If the n observations are $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, their mean is:

$$
\bar{x}=\frac{\text { sum of observations }}{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

In mathematics, the capital Greek letter \sum is short for "add them all up." Therefore, the formula for the mean can be written in more compact notation:

$$
\bar{x}=\frac{\sum \mathrm{x}_{\mathrm{i}}}{n}
$$

Measuring Center: The Median

- Another common measure of center is the median. In section 1.2, we learned that the median describes the midpoint of a distribution.

Definition:

The median \mathbf{M} is the midpoint of a distribution, the number such that half of the observations are smaller and the other half are larger.

To find the median of a distribution:

1) Arrange all observations from smallest to largest.
2) If the number of observations n is odd, the median M is the center observation in the ordered list.
3) If the number of observations \boldsymbol{n} is even, the median M is the average of the two center observations in the ordered list.

Measuring Center

- Use the data below to calculate the mean and median of the commuting times (in minutes) of 20 randomly selected New York workers.

Example, page ??

10	30	5	25	40	20	10	15	30	20	15	20	85	15	65	15	60	60	40	45

$$
\bar{x}=\frac{10+30+5+25+\ldots+40+45}{20}=31.25 \text { minutes }
$$

0	5	
1	005555	
2	0005	
3	00	Key: $4 \mid 5$
4	005	represents a
5		New York
6	005	worker who 7
	reported a 45- 8	minute travel
		time to work.

$$
M=\frac{20+25}{2}=22.5 \text { minutes }
$$

Comparing the Mean and the Median

- The mean and median measure center in different ways, and both are useful.
- Don't confuse the "average" value of a variable (the mean) with its "typical" value, which we might describe by the median.

Comparing the Mean and the Median

The mean and median of a roughly symmetric distribution are close together.

If the distribution is exactly symmetric, the mean and median are exactly the same.

In a skewed distribution, the mean is usually farther out in the long tail than is the median.

Measures of spread

Range: the spread of all the data, calculated as the difference between the largest and smallest observations in the data.

Standard deviation: average or "typical" deviation from the mean for a set of data. Calculated by finding the average of the squared deviations from the mean.

Interquartile range (IQR) : the spread of the middle 50% of the data, calculated by difference in $Q_{3}-Q_{1}=I Q R$

Measuring Spread: The Interquartile Range (IQR)

A measure of center alone can be misleading.
A useful numerical description of a distribution requires both a measure of center and a measure of spread.

How to Calculate the Quartiles and the Interquartile Range

To calculate the quartiles:

1) Arrange the observations in increasing order and locate the median M.
2) The first quartile $\boldsymbol{Q}_{\boldsymbol{1}}$ is the median of the observations located to the left of the median in the ordered list.
3) The third quartile \boldsymbol{Q}_{3} is the median of the observations located to the right of the median in the ordered list.
The interquartile range (IQR) is defined as:

$$
I Q R=Q_{3}-Q_{1}
$$

