Today's AGENDA - Aug 2021

TAKE out your HW \#1 \& Signed Syllabus ready to check and to turn in

Discuss Website and syllabus

- Review Expectations, \& Norms
- Review August Calendar, Chap. 1 \& HW
- Questions \& Next Steps
- Aug 30th- QUIZ \#1 on intro concepts

General Class Reminders:

- Start on time, end on time
- Please keep phones put away unless we are using them for an activity. Note: Mr. L. will ask to take your phone if you're using it without permission.
- Warm-Ups: Whenever we have warm-ups, you are expected to write the problems (what are you trying to find?) and your solution, with work.
- Class Meetings \neq Spectators sport
- Questions, concerns?

Warm-UP

1) A is a subset of the defined population. The characteristic or variable of a sample is called a \qquad .
2) What is 2.1 percent of 60 ?
3) Who won the free-throw battle for the first 20 games?

(from 2013)	First ten games	Next ten games
S. Curry (\%)	0.90	0.80
K. Durant (\%)	0.85	0.70

Warm-UP

1) A sample is a subset of the defined population (usually selected for study in some manner).

The characteristic or variable of a sample is called a statistic

The characteristic or variable of a population is called a parameter

What is 2.1 percent of $60 ?$

- What is 100 percent of 60 ? 60
- What is 50 percent of 60? 30
- What is 10 percent of 60 ?

6 60(10\%) =

$$
60(0.1)=6
$$

What is 1 percent of 60 ?
$60(1 \%)=$
$60(0.01)=\mathbf{0 . 6}$

What is 2.1 percent of $60 ?$

- What is $\mathbf{1}$ percent of 60 ? $60(0.01)=\mathbf{0 . 6}$
- What is 2 percent of 60 ? $60(0.02)=\mathbf{1 . 2}$
- What is 0.1 percent of 60 ?

$$
60(0.001)=0.06
$$

- What is 2.1 percent of 60 ?
$60(0.021)=60(0.02)+60(0.001)=1.26$

Warm-UP

- Who won the free-throw battle for the first 20 games (from 2013 season)?
Statistics necessitates that we make decisions with incomplete information (statistics from samples!)

S. Curry $(\%)$	0.90 $\frac{9}{10}$	0.80 100	$\mathbf{0 . 8 0 9}$ $=$ 110
K. Durant (\%)	0.85	0.70	$\mathbf{0 . 8 3 6}$ Winner!
	$\frac{85}{100}$	$\frac{7}{10}$	$=\frac{92}{110}$

Mistakes can occur when you try to "average" averages!

Chapter 1: Role of Statistics \& the Data Analysis Process

Introduction
Data Analysis: Making Sense of Data

Chapter 1
 Role of Statistics \& the Data Analysis Process

- Introduction1.1-1.3: Statistics, Variability, and the Data Analysis Process
-1.4 Types of Data \& Graphical Displays of Data

Introduction Data Analysis: Making Sense of Data

Learning Objectives

After this section, you should be able to...
\checkmark DEFINE "Individuals" and "Variables"
\checkmark DISTINGUISH between "Categorical" and "Quantitative" variables
\checkmark DEFINE "Distribution"
\checkmark DESCRIBE the idea behind "Inference"

Statistics is the science of data.

Data Analysis is the process of organizing, displaying, summarizing, and asking questions about data.

Definitions:

Individuals (or Observations) - objects (people, animals, things) described by a set of data

Variable - any characteristic of an individual

Categorical Variable

- places an individual into one of several groups or categories.

Quantitative Variable

- takes numerical values for which it makes sense to find an average.

A variable generally takes on many different values. In data analysis, we are interested in how often a variable takes on each value.

Definition:

Distribution - tells us what values a variable takes and how often it takes those values

How to Explore Data

Examine each variable by itself.
Then study
relationships among the variables.

моов	${ }^{\text {MPG }}$	моов	mpa	моов	MPG
Aura RL	22	Dodge Aenenger	30	Mereseses Senzez3o	
Adid 6 caatio		Hunda El Eanta	${ }_{3}$	MecrumMan	${ }^{29}$
Eenley Anage		Jaguar F	25	Msubushi Calant	
mu5281		Ka O Oima	32	Nssan Nxima	${ }^{26}$
		Lexus ©S 350		Rols foye Phan	
Comer		Linolon MKZ	28	Saum Aura	${ }^{3}$
		Maza 6	29	Topola Camy	
	Start with a graph or graphs				

From Data Analysis to Inference

Population

Sample

Make an Inference about the Population.

Perform Data
Analysis, keeping probability in mind...

The Data Analysis Process (p. 6 in your textbook)

- Understanding the nature of the problem
- Deciding what to measure and how to measure it
- Let's talk
about stats BABY!
- Data Collection
- Data Summarization \& preliminary analysis
- Formal data analysis
- Interpretation of results

Poll Everywhere (BYOD)

- wifi at: PollEv.com/clowber280
-Text: clowber280 to $\mathbf{3 7 6 0 7}$ enter my poll

```
                        \squareRespond at PollEv.com/clowber280
                        Text CLOWBER280 to 37607 once to join, then A, B, C, D, or E
```

What magnet are you in here at Manual?

```
HSU
```


Let 's Talk Stats...

1.) How did deaths per year from natural disasters change in the last century?
2.) Worldwide, women aged 30 spent about how many (total) years in school?
(Note: Men of the same age spent 8 years)
3.) In the last 20 years, the percent of people living in extreme poverty has...

Introduction Data Analysis: Making Sense of Data

Summary

In this section, we learned that...
\checkmark A dataset contains information on individuals.
\checkmark For each individual, data give values for one or more variables.
\checkmark Variables can be categorical or quantitative.
\checkmark The distribution of a variable describes what values it takes and how often it takes them.
\checkmark Inference is the process of making a conclusion about a population based on a sample set of data.

Sample Student responses from last year

```
W When poll is active, respond at PollEv.com/clowber280
    * Text CLOWBER280 to 37607 once to join
```

How did deaths per year from natural disasters change in the

Women aged 30 spent about how many years in school? (Men of the same age spent 8 years)

HW 1 - Counting on Dyscalculia Article and Q's (SAMPLE answers)

4B. The two phrases given are not the same, and therefore not equally likely. Given that there are many people around the world that speak English, but are not U.S. citizens, the conditional probability of

$$
\text { P(Speak Eng } \mid \text { U.S.Cit })>P(\text { U.S.Cit } \mid \text { Speak Eng })
$$

No they u in the same thing Ohe is asking th that an english $\mathrm{op} \quad \sim r$ is Am can and the othe thop wiliththat - orlcan is an english spe नuse the cralluo atting breast cancer 40 year or man is 1.5 perc it and then as th ontinue to age tium hancer/ getting cancer it

Frequency Distributions \& Bar Charts for Categorical Data

- Frequency Distribution: A table that displays the possible categories along with the associated frequencies (the count or number of times it occurs)
- Relative Frequency Distribution: A table that displays the possible categories along with the proportion of observations for each category.
- relative frequency $=\frac{\text { frequency }}{\text { total observations in data set }}$

Categorical Variables place individuals into one of several groups or categories

- The values of a categorical variable are labels for the different categories
- The distribution of a categorical variable lists the count or percent of individuals who fall into each category.

Example	Frequency Table		Relative Frequency Table	
	Format	Count of Stations	Format	Percent of Stations
	Adult Contemporary	1556	Adult Contemporary	11.2
	Adult Standards	1196	Adult Standards	8.6
Variable	Contemporary Hit	569	Contemporary Hit	4.1
	Country	2066	Country	14.9
	News/Talk	\sim^{2179}	News/Talk	15.7
Values	Oldies	1060	Oldies	7.1
	Religious	2014	Religious	14.6
	Rock	869		6.3
	Spanish Language	750	Ount iguage	5.4
	Other Formats	1579	Other Form Per	t 11.4
	Total	13838	Total	-99.9

Displaying categorical data

Frequency tables can be difficult to read.
Sometimes it is easier to analyze a distribution by displaying it with a bar graph or pie chart.

Displaying categorical data

Frequency tables can be easier to analyze by displaying the distribution with a bar graph. Compare these $\mathbf{2}$ graphical displays:

Frequency Table	
Format	Count of Stations
Adult Contemporary	1556
Adult Standards	1196
Contemporary Hit	569
Country	2066
News/Talk	2179
Oldies	1060
Religious	2014
Rock	869
Spanish Language	750
Other Formats	1579
Total	$\mathbf{1 3 8 3 8}$

Bar Graphs vs. Histograms (or Bar Charts)

Bar charts and histograms compare sizes of different groups.

Bar charts

- Qualitative groups
- Symmetry and skewness not used
- Space between columns
- Columns can be vertical or

Histograms

- Quantitative groups
- Symmetry and skewness are used
- No space between columns
- Columns are always vertical

∞

Bar Graphs \neq Histograms

Video Link: http://stattrek.com/statistics/charts/histogram.aspx?Tutorial=AP

Looking Ahead...

In the next Section...

We'll learn how to analyze categorical data.
\checkmark Two-Way Tables
\checkmark Conditional Distributions
\checkmark Experimental Design
\checkmark Sampling Techniques
We'll also learn how to organize a statistical problem.

END of slides

See you next time!

Review HW \#1
 Counting on Dyscalculia

1) What are the three common causes of the problem for misinterpreting statistics that are cited by the author?

- (1)psychological inability to objectively confront numbers or health hazards; (2) ignorance/confusion about the mathematics of statistics; (3) factual errors caused by how statistics were obtained/generated

2) The author states that we have a preference for remembering statistics that are nice round numbers, typically ones that are multiples of what?

- Multiples of 10 (base-10 number system)

3) What aspect is most critical about a random sample?

- Absolute size of a sample is most important, not its percentage of the population of interest.

Review HW \#1

Counting on Dyscalculia

4) Are these two phrases the same (meaning are they equally likely): (1) probability that someone is a U.S. citizen given that he or she speaks English, vs (2) probability that someone speaks English given that he or she is a U.S. citizen? Why or why not?

- Conditional probability issue: $\boldsymbol{P}(\boldsymbol{a} \mid \boldsymbol{b})$
- Read as "What is the probability of a, given that b is known"
(1) $P($ U.S Citizen \mid speak English $)=\frac{20}{100}$
(2) $P($ speak English | U.S Citizen $)=\frac{95}{100}$

Conditional probability issue, especially w/ medical tests and false positives (Bayes' Theorem)

Review HW \#1
 Counting on Dyscalculia

- 5) Considering that hear that 1 in 8 women will develop breast cancer, should all women be equally fearful of developing the disease within the next few years? Give an example to help explain your answer.
- No, a woman's age changes her risk factor.
- Population of women in their early 20's, only have a 0.5% chance (5 out of 1000) of developing breast cancer over the next 20 years
- Population of women in their early 40's, only have a 3.8\% chance (38 out of 1000) of developing breast cancer over the next 20 years

Review HW \#1

Counting on Dyscalculia

-6) I THOUGHT this article was a ___(1 = easy to $5=$ extremely difficult), in terms of my ability to understand the ideas presented. This is known as a Likert scale.

- 7) Based on the author's figure of "452,888,988,750 cases of dyscalculia recorded in this country annually", what was the population of the U.S. at the time this article was written?

$$
x=\text { U.S.population in } 1994
$$

88.47 \% of \boldsymbol{x} have 5.61 per day, $\times 365$ days $=$ Number of annual cases

$$
\begin{gathered}
0.8847 x(5.61)(365)=452,888,988,750 \\
x=\mathbf{2 5 0}, \mathbf{0 0 0}, \mathbf{0 0 0}
\end{gathered}
$$

