Today's AGENDA...

In today's lesson...

We'll learn how to display quantitative data.
\checkmark Review Dotplots
\checkmark Introduce Stemplots
\checkmark Introduce Histograms
We'll also learn how to describe and compare distributions of quantitative data.

Today's Lesson Displaying Quantitative Data with Graphs

Learning Objectives

After this section, you should be able to...
\checkmark CONSTRUCT and INTERPRET dotplots, stemplots, and histograms
\checkmark DESCRIBE the shape of a distribution
\checkmark COMPARE distributions
\checkmark USE histograms wisely

Warm-UP

1) What is the acronym we use to remember describing the different features or attributes of quantitative distributions?
2) What are the different types of graphical or visual charts that we use for quantitative data?
3) What is the five number summary?

Definition:

The five-number summary of a distribution consists of the smallest observation, the first quartile, the median, the third quartile, and the largest observation, written in order from smallest to largest.
Min
Q_{1}
M
Q_{3}
Max

Graphical Displays of numerical data

Percentage of graduating seniors, in the year 2004, with scaled scores in the specified ranges, for the math division of the SAT

Order leaves

Examining the Distribution of a Quantitative Variable

- The purpose of a graph is to help us understand the data. After you make a graph, always ask, "What do I see?"

How to Examine the Distribution of a Quantitative Variable

In any graph, look for the overall pattern and for striking departures from that pattern.

Describe the overall pattern of a distribution by its:
-Shape
-Center
-Spread

Don't forget your SOCS!

Note individual values that fall outside the overall pattern. These departures are called outliers.

Describing Shape

- When you describe a distribution's shape, concentrate on the main features. Look for rough symmetry or clear skewness.

Definitions:

A distribution is roughly symmetric if the right and left sides of the graph are approximately mirror images of each other.

A distribution is skewed to the right (right-skewed or positively skewed) if the right side of the graph (containing the half of the observations with larger values) is much longer than the left side.
It is skewed to the left (left-skewed or negatively skewed) if the left side of the graph is much longer than the right side.

U.S. Income Distribution from 2005

Skewed Right or positively skewed \rightarrow

Review of Dotplots

One of the simplest graphs to construct and interpret is a dotplot. Each data value is shown as a dot above its location on a number line.

How to Make a Dotplot

1) Draw a horizontal axis (a number line) and label it with the variable name.
2) Scale the axis from the minimum to the maximum value.
3) Mark a dot above the location on the horizontal axis corresponding to each data value.

Measuring Center: The Mean

- The most common measure of center is the ordinary arithmetic average, or mean.

Definition:

To find the mean \bar{x} (pronounced "x-bar") of a set of observations, add their values and divide by the number of observations. If the n observations are $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, their mean is:

$$
\bar{x}=\frac{\text { sum of observations }}{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

In mathematics, the capital Greek letter Σ (Sigma) is short for "add them all up." Therefore, the formula for the mean can be written in more compact notation:

$$
\bar{x}=\frac{\sum \mathrm{x}_{\mathrm{i}}}{n}
$$

Measuring Center: The Median

- Another common measure of center is the median. In section 1.2, we learned that the median describes the midpoint of a distribution.

Definition:

The median \mathbf{M} is the midpoint of a distribution, the number such that half of the observations are smaller and the other half are larger.

To find the median of a distribution:

1) Arrange all observations from smallest to largest.
2) If the number of observations \boldsymbol{n} is odd, the median M is the center observation in the ordered list.
3) If the number of observations n is even, the median M is the average of the two center observations in the ordered list.

Find the mean of this mean \& median of this data:

MODEL	MPG
Acura RL	22
Audi A6 Quatro	23
Bentey Arnage	14
BMW 5281	28
Buick Lacrosse	28
Cadillc CTS	25
Chevrolet Malibu	33
Chrysler Sebing	30

MODEL	MPG
Dodge Avenger	30
Hyundai Elantra	33
Jaguar XF	25
Kia Optima	32
Lexis GS 350	26
Lincolon MKZ	28
Mazda 6	29
Mercedes-Benz E350	24

MODEL	MPG
Mercedes-Benz E350	24
Mercuy Milan	29
Misubishi Galant	27
Nissan Maxima	26
Rolls Royce Phantiom	18
Saturn Aura	33
Toyota Camry	31
Volkswagen Passat	29

CENTERS (measures of central tendency): mean, median, mode
CENTER: Mean $=26.958 \mathrm{mpg}$, Median $\equiv 28 \mathrm{mpg}$, Mode \equiv multimodal

Examine this data

Example

- The table and dotplot below displays the Environmental Protection Agency's estimates of highway gas mileage in miles per gallon (MPG) for a sample of 24 model year 2009 midsize cars.

Describe the shape, center, and spread of the distribution. Are there any outliers?

SHAPE: skewed left or neg. skewed

CENTER: mean, Median, mode?

SPREAD: range is
$19(33-14)$

Comparing the Mean and the Median

- The mean and median measure center in different ways, and both are useful.
- Don't confuse the "average" value of a variable (the mean) with its "typical" value, which we might describe by the median.

Comparing the Mean and the Median

The mean and median of a roughly symmetric distribution are close together.

If the distribution is exactly symmetric, the mean and median are exactly the same.

In a skewed distribution, the mean is usually farther out in the long tail than is the median.

Measuring Center

- Use the data below to calculate the mean and median of the commuting times (in minutes) of 20 randomly selected New York workers.

Example

10	30	5	25	40	20	10	15	30	20	15	20	85	15	65	15	60	60	40	45

$$
\bar{x}=\frac{10+30+5+25+\ldots+40+45}{20}=31.25 \text { minutes }
$$

0	5	
1	005555	
2	0005	
3	00	Key: $4 \mid 5$
4	005	represents a
5		New York
6	005	worker who
7		reported a 45- minute travel
8	5	time to work.

$$
M=\frac{20+25}{2}=22.5 \text { minutes }
$$

Stemplots (Stem-and-Leaf Plots)

Another simple graphical display for small data sets is a stemplot. Stemplots give us a quick picture of the distribution while including the actual numerical values.

How to Make a Stemplot

1) Separate each observation into a stem (all but the final digit) and a leaf (the final digit).
2) Write all possible stems from the smallest to the largest in a vertical column and draw a vertical line to the right of the column.
3) Write each leaf in the row to the right of its stem.
4) Arrange the leaves in increasing order out from the stem.
5) Provide a key that explains in context what the stems and leaves represent.

Stemplots (Stem-and-Leaf Plots)

Question:
 How many pairs of shoes do you have?

Key: 4|9
represents a female student who reported having 49 pairs of shoes.

Splitting Stems and Back-to-Back Stemplots

- When data values are "bunched up", we can get a better picture of the distribution by splitting stems.
- Two distributions of the same quantitative variable can be compared using a back-to-back stemplot with common stems.

Females													Males						
50	26	26	31	57	19	24	22	23	38	14	7	6	5	12	38	8	7	10	10
13	50	13	34	23	30	49	13	15	51	10	11	4	5	22	7	5	10	35	7

Key: 4|9
represents a student who reported having 49 pairs of shoes.

Comparing Distributions

Some of the most interesting statistics questions involve comparing two or more groups.
Always discuss shape, center, spread, and possible outliers whenever you compare distributions of a quantitative variable.

Compare the distributions of household size for these two countries. Don't forget your SOCS!

Helicopter Design

- You have 3 minutes to design a helicopter using a $1 / 2$ sheet of paper
- You may not use any addition
- You are allowed to use subtraction
-Coloring is optional
- Design augments/changes are welcomed after testing

Desired characteristics (response variables)

1. Rotation
2. Vertical descent (or a decent vertical descent ©)

AGENDA - Oct 252022

Put your name on Test review (HW \#12) and pass to front

Warm-UP
Video: Histograms
Review \& practice box plots \& histograms
Test review answers
TEST \#2 on Thursday

October 12, 2022 Warm UP

Practicing Box and Whisker Plots with the
5 Number summary (already completed?)

1. Find the five number summary for each set of data:

Data Set A: 4, 5, 7, 9, 11
Data Set B: 4, 5, 7, 8, 9, 11
2. Find the IQR for each set
3. Make a box plot for each data set.

Warm UP

Practicing Box and Whisker Plots

 with the 5 Number summary1. Five number summary:

Data Set A: 4, 5, 7, 9, 11

$\begin{array}{llll}M i n & Q_{1} & \text { Med } \quad Q_{3} \quad \operatorname{Max}\end{array}$

$$
\begin{array}{llllll}
4 & 4.5 & 7 & 10 & 11 & I Q R=5.5
\end{array}
$$

Data Set B: 4, 5, 7, 8, 9, 11
Min
$Q_{1} \quad$ Med
Q_{3}
4
5
7.5
9
11
$I Q R=4$

Comparing Box Plots \& Five Number summary

Review Frequency Distributions \& Bar Charts for Categorical Data

- Frequency Distribution: A table that displays the possible categories along with the associated frequencies (the count or number of times it occurs)
- Relative Frequency Distribution: A table that displays the possible categories along with the proportion of observations for each category.
- relative frequency $=\frac{\text { frequency }}{\text { total observations in data set }}$

Categorical Variables place individuals into one of several groups or categories

- The values of a categorical variable are labels for the different categories
- The distribution of a categorical variable lists the count or percent of individuals who fall into each category.

Example	Frequency Table		Relative Frequency Table	
	Format	Count of Stations	Format	Percent of Stations
	Adult Contemporary	1556	Adult Contemporary	11.2
	Adult Standards	1196	Adult Standards	8.6
Variable	Contemporary Hit	569	Contemporary Hit	4.1
	Country	2066	Country	14.9
	News/Talk	$\sim_{-} 2179$	News/Talk	15.7
Values	Oldies	1060	Oldies	7.1
	Religious	2014	Religious	14.6
	Rock	869		6.3
	Spanish Language	750	Ount iguage	5.4
	Other Formats	1579	Other Form Per	Ht 11.4
	Total	13838	Total	-99.9

Displaying categorical data

Frequency tables can be difficult to read.
Sometimes it is easier to analyze a distribution by displaying it with a bar graph or pie chart.

Displaying categorical data

Frequency tables can be easier to analyze by displaying the distribution with a bar graph. Compare these $\mathbf{2}$ graphical displays:

Frequency Table	
Format	Count of Stations
Adult Contemporary	1556
Adult Standards	1196
Contemporary Hit	569
Country	2066
News/Talk	2179
Oldies	1060
Religious	2014
Rock	869
Spanish Language	750
Other Formats	1579
Total	$\mathbf{1 3 8 3 8}$

Bar Graphs vs. Histograms (or Bar Charts)

Bar charts and histograms compare sizes of different groups.

Bar charts

- Qualitative groups
- Symmetry and skewness not used
- Space between columns
- Columns can be vertical or

Histograms

- Quantitative groups
- Symmetry and skewness are used
- No space between columns
- Columns are always vertical

∞

Bar Graphs \neq Histograms

Video Link: http://stattrek.com/statistics/charts/histogram.aspx?Tutorial=AP

Displays of Numerical Data: Frequency Distributions using Histograms

Percentage of graduating seniors, in the year 2004, with scaled scores in the specified ranges, for the math division of the SAT

Histograms

- Quantitative variables often take many values. A graph of the distribution may be clearer if nearby values are grouped together.
The most common graph of the distribution of one quantitative variable is a histogram.

How to Make a Histogram

1) Divide the range of data into classes of equal width.
2) Find the count (frequency) or percent (relative frequency) of individuals in each class.
3) Label and scale your axes and draw the histogram. The height of the bar equals its frequency. Adjacent bars should touch, unless a class contains no individuals(observations).

Example

Making a Histogram

- The table below presents data on the percent of residents from each state who were born outside of the U.S.

Practice Example: Percent of OLD People

- Use your TI-84 calculator to input the data regarding Percent of residents aged 65 or older in each state.

EDIT EALE TESTS
OEdit.
2: Sorth
3: Sortoc
5: SetupEditor

- From this data, we want to generate a histogram to graphically represent the data.

Practice Example: Percent of residents ≥ 65 years old

- Generate a Histogram : \quad | with you TI-84 calculators
- What is your window setting?
- Can you change the intervals?

- Questions

Histograms on TI-84

You can change the intervals:

- You can change the zoom:

ZOOM MEMORY
 1:ZBox
 2:Zoom In
 3:Zoom Out
 4:ZDecimal
 5:ZSquare
 6:ZStandard
 7:ZTri9
 8:7Integer
 9لZoomStat

Bar Chart or Histogram?

Age At Presentation

Prevention and Management of Calcaneal Apophysitis Children: An Overuse Syndrome. Lyle J. Micheli, M.D., and M. Lloyd Ireland, M.D.
Journal of Pediatric Orthopedics 7:34-38@ 1987 Raven Press, New York

Using Histograms Wisely

- Here are several cautions based on common mistakes students make when using histograms.

Cautions

1) Don't confuse histograms and bar graphs.
2) When comparing distributions with different numbers of observations (different size samples) use percents instead of counts on the vertical axis (relative frequency).
3) Choose the best graphical display: bar chart, dot plot, or histogram. Just because a graph looks nice, it's not necessarily a meaningful display of data.
