Warm Up

Statistics is the study of data_When referring to a population, a characteristic we reference is called a parameter
but when referring to a sample, a characteristic we reference is called a statistic
2. What is a frequency distribution table?
3. What is a relative frequency distribution?

Chapter 3: Graphical Methods for Describing Data

Section 3.1
Analyzing Categorical Data

Warm Up

A
(SRS) of size n is chosen in such a way that every group of n individuals in the population has an equal to be selected as the sample.
2) What is a frequency distribution table?
3) What is a relative frequency distribution?

Warm Up

simple random sample

(SRS) of size n is chosen in such a way that every group of n individuals in the population has an equal probability to be selected as the sample.
2. What is a frequency distribution table?
3. What is a relative frequency distribution?

Frequency Distributions \& Bar Charts for Categorical Data

- Frequency Distribution: A table that displays the possible categories along with the associated frequencies (the count or number of times it occurs)
- Relative Frequency Distribution: A table that displays the possible categories along with the proportion of observations for each category.
- relative frequency $=\frac{\text { frequency }}{\text { total observations in data set }}$

Chapter 3: Graphical Methods for Describing Data

Section 3.1
Analyzing Categorical Data

Chapter 3: Graphical Methods for Describing Data

- Introduction: Data Analysis: Making Sense of Data
- 3.1 Review Analyzing Categorical Data
- 3.2 Displaying Quantitative Data with Graphs
-3.3 Describing Quantitative Data with Numbers

Section 3.1 Analyzing Categorical Data

Learning Objectives

After this section, you should be able to...
\checkmark CONSTRUCT and INTERPRET bar graphs and pie charts
\checkmark RECOGNIZE "good" and "bad" graphs
\checkmark CONSTRUCT and INTERPRET two-way tables
\checkmark DESCRIBE relationships between two categorical variables
\checkmark ORGANIZE statistical problems

Categorical Variables place individuals into one of several groups or categories

- The values of a categorical variable are labels for the different categories
- The distribution of a categorical variable lists the count or percent of individuals who fall into each category.

Displaying categorical data

Frequency tables can be difficult to read. Sometimes is is easier to analyze a distribution by displaying it with a bar graph or pie chart.

Relative Frequency Table	
Format	Percent of Stations
Adult Contemporary	11.2
Adult Standards	8.6
Contemporary Hit	4.1
Country	14.9
News/Talk	15.7
Oldies	7.7
Religious	14.6
Rock	6.3
Spanish Language	5.4
Other Formats	11.4
Total	99.9

Graphs: Good and Bad

Bar graphs compare several quantities by comparing the heights of bars that represent those quantities.

DIRECTV
 STOMPS 픈COMPETITION

DIRECTV
has multiple problems. How many can you point out?

Alternate Example

This ad for DIRECTV has multiple problems. How many can you point out?

DIRECTV
 STOMPS 픈COMPETITION

DIRECTV
 OF YOUR FAVORITE HD CHANNELS

Dish Network

Not really. They count 24 part-time channels.

Cable
56°
Only in a few major cities.

Examples of Misleading Statistics

How it should look:

Examples of Misleading Statistics

Examples of Misleading Statistics

Problems??

Can respondents vote twice?

Rasmussen believes in giving more than 100\%

FOX fact checkers stink at math

Two-Way Tables and Marginal Distributions

When a dataset involves two categorical variables, we begin by examining the counts or percents in various categories for one of the variables.

Definition:

Two-way Table - describes two categorical variables, organizing counts according to a row variable and a column variable.

Example

Young adults by gender and chance of getting rich			
	Female	Male	Total
Almost no chance	96	98	194
Some chance, but probably not	426	286	712
A 50-50 chance	696	720	1416
A good chance	663	758	1421
Almost certain	486	597	1083
Total	2367	2459	4826

What are the variables described by this twoway table? Opinion \& gender How many young adults were surveyed?

4826 total

Two-Way Tables and Marginal Distributions

Definition:
 The Marginal Distribution of one of the categorical variables in a two-way table of counts is the distribution of values of that variable among all individuals described by the table.

Note: Percents are often more informative than counts, especially when comparing groups of different sizes.

To examine a marginal distribution,

1) Use the data in the table to calculate the marginal distribution (in percents) of the row or column totals.
2) Make a graph to display the marginal distribution.

Two-Way Tables and Marginal Distributions

Example

Young adults by gender and chance onal			
	Follale	Male	Total
Almost no chance	96	98	194
Some chance, but probably no	426	286	712
A 50-50 chance	696	720	1416
A good chance	663	758	1421
Almost certain	486	597	1083
Total	2367	2459	4826

Examine the marginal distribution of chance of getting rich.

Response	Percent	Chance of being wealthy by age 30				
Almost no chance	$\begin{gathered} 194 / 4826= \\ 4.0 \% \end{gathered}$					
Some chance	$\begin{gathered} 712 / 4826= \\ 14.8 \% \end{gathered}$					
A 50-50 chance	$\begin{gathered} 1416 / 4826= \\ 29.3 \% \end{gathered}$					
A good chance	$\begin{gathered} 1421 / 4826= \\ 29.4 \% \end{gathered}$	$\begin{array}{r} 10 \\ 5 \\ 0 \end{array}$				
Almost certain	$\begin{gathered} \text { 1083/4826 } \\ 22.4 \% \end{gathered}$		Some chance	50-50 chance vey Resp	Good chance se	Almost certain

Relationships Between Categorical Variables

- Marginal distributions tell us nothing about the relationship between two variables.

Definition:

A Conditional Distribution of a variable describes the values of that variable among individuals who have a specific value of another variable.

To examine or compare conditional distributions,

1) Select the row(s) or column(s) of interest.
2) Use the data in the table to calculate the conditional distribution (in percents) of the row(s) or column(s).
3) Make a graph to display the conditional distribution.

- Use a side-by-side bar graph or segmented bar graph to compare distributions.

Two-Way Tables and Conditional Distributions

How would you complete this 2-way table for our class? (Last Year's R2)

Students by gender and Magnet in AP Stats

Fersiale

Male

TOTAL

HSU	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$
J \& C	$\mathbf{3}$	$\mathbf{2}$	5
MST	$\mathbf{4}$	$\mathbf{8}$	12
VA	$\mathbf{2}$	$\mathbf{0}$	2
YPAS	$\mathbf{1}$	$\mathbf{2}$	3
TOTAL	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{2 6}$

How would you complete this 2-way table for our class? RED 4

Students by grade and Magnet in AP Stats

	Sopsis	Junior	Senior	TOTAL
HSU				
J\&C				
MST				
VA				
YPAS				
TOTAL				

AP Stats Students 2020 (2-Way Frequency Table) Joint Freq.

AP Stats Students 2020 (2-Way Relative Frequency Table)

sopis Junior Senior TOTAL

HSU	$\mathbf{0 . 0 3 9}$	$\mathbf{0 . 0 3 9}$	$\mathbf{0 . 1 7 6}$	0.254
J \& C	$\mathbf{0}$	$\mathbf{0 . 0 2 0}$	$\mathbf{0 . 0 3 9}$	0.059
MST	$\mathbf{0 . 3 5 3}$	$\mathbf{0 . 0 7 8}$	$\mathbf{0 . 1 7 6}$	0.610
VA	$\mathbf{0}$	$\mathbf{0 . 0 2 0}$	$\mathbf{0 . 0 2 0}$	0.039
YPAS	$\mathbf{0}$	$\mathbf{0 . 0 2 0}$	$\mathbf{0 . 0 2 0}$	0.039
TOTAL	$\mathbf{0 . 3 9 2}$	$\mathbf{0 . 1 7 6}$	$\mathbf{0 . 4 3 1}$	$\mathbf{1 . 0 0 0}$

Section 3.1 Analyzing Categorical Data

Summary

In this section, we learned that...
\checkmark The distribution of a categorical variable lists the categories and gives the count or percent of individuals that fall into each category.
\checkmark Pie charts and bar graphs display the distribution of a categorical variable.

* A two-way table of counts organizes data about two categorical variables.
* The row-totals and column-totals in a two-way table give the marginal distributions of the two individual variables.
* There are two sets of conditional distributions for a two-way table.

Section 3.1 (\& from Chapter 1) Analyzing Categorical Data

Summary, continued

In this section, we learned that...
\checkmark We can use a side-by-side bar graph or a segmented bar graph to display conditional distributions.
\checkmark To describe the association between the row and column variables, compare an appropriate set of conditional distributions.
\checkmark Even a strong association between two categorical variables can be influenced by other variables lurking in the background.
\checkmark You can organize many problems using the four steps state, plan, do, and conclude.

Looking Ahead...

In the next Section...

We'll learn how to display quantitative data.
\checkmark Review Dotplots
\checkmark Introduce Stemplots
\checkmark Introduce Histograms
We'll also learn how to describe and compare distributions of quantitative data.

Section 3.2
 Displaying Quantitative Data with Graphs

Learning Objectives

After this section, you should be able to...
\checkmark CONSTRUCT and INTERPRET dotplots, stemplots, and histograms
\checkmark DESCRIBE the shape of a distribution
\checkmark COMPARE distributions
\checkmark USE histograms wisely

Dotplots

One of the simplest graphs to construct and interpret is a dotplot. Each data value is shown as a dot above its location on a number line.

How to Make a Dotplot

1) Draw a horizontal axis (a number line) and label it with the variable name.
2) Scale the axis from the minimum to the maximum value.
3) Mark a dot above the location on the horizontal axis
corresponding to each data value.

Number of Goals Scored Per Game by the 2004 US Women's Soccer Team

| 3 | 0 | 2 | 7 | 8 | 2 | 4 | 3 | 5 | 1 | 1 | 4 | 5 | 3 | 1 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 3 | 2 | 1 | 2 | 2 | 2 | 4 | 3 | 5 | 6 | 1 | 5 | 5 | 1 | 1 | 5 |

- Examining the Distribution of a Quantitative Variable

- The purpose of a graph is to help us understand the data. After you make a graph, always ask, "What do I see?"

How to Examine the Distribution of a Quantitative Variable

In any graph, look for the overall pattern and for striking departures from that pattern.

Describe the overall pattern of a distribution by its:
-Shape
-Center
-Spread

Don't forget your SOCS!

Note individual values that fall outside the overall pattern. These departures are called outliers.

Describing Shape

- When you describe a distribution's shape, concentrate on the main features. Look for rough symmetry or clear skewness.

Definitions:

A distribution is roughly symmetric if the right and left sides of the graph are approximately mirror images of each other.

A distribution is skewed to the right (right-skewed or positively skewed) if the right side of the graph (containing the half of the observations with larger values) is much longer than the left side.
It is skewed to the left (left-skewed or negatively skewed) if the left side of the graph is much longer than the right side.

U.S. Income Distribution from 2005

Skewed Right or positively skewed \rightarrow

Measuring Center: The Mean

- The most common measure of center is the ordinary arithmetic average, or mean.

Definition:

To find the mean \bar{x} (pronounced "x-bar") of a set of observations, add their values and divide by the number of observations. If the n observations are $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, their mean is:

$$
\bar{x}=\frac{\text { sum of observations }}{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

In mathematics, the capital Greek letter Σ (Sigma) is short for "add them all up." Therefore, the formula for the mean can be written in more compact notation:

n

Measuring Center: The Median

- Another common measure of center is the median. In section 1.2, we learned that the median describes the midpoint of a distribution.

Definition:

The median \mathbf{M} is the midpoint of a distribution, the number such that half of the observations are smaller and the other half are larger.

To find the median of a distribution:

1) Arrange all observations from smallest to largest.
2) If the number of observations \boldsymbol{n} is odd, the median M is the center observation in the ordered list.
3) If the number of observations n is even, the median M is the average of the two center observations in the ordered list.

Find the mean of this mean \& median of this data:

MODEL	MPG
Acura RL	22
Audi A6 Quattro	23
Bentley Arnage	14
BMW5281	28
Buick Lacrosse	28
Cadillac CTS	25
Chevrolet Malibu	33
Chrysler Sebring	30

MODEL	MPG	MODEL	MPG
Dodge Avenger	30	Mercedes-Benz E350	24
Hyundai Elantra	33	Mercury Milan	29
Jaguar XF	25	Mitsubis hi Galant	27
Kia Optima	32	Nissan Maxima	26
Lexus GS 350	26	Rolls Royce Phantom	18
Lincolon MKZ	28	Saturn Aura	33
Mazda 6	29	Toyota Camry	31
Mercedes -BenzE350	24	Volk	29

CENTERS (measures of central tendency): mean, median, mode
CENTER: Mean $=26.958 \mathrm{mpg}$, Median $\equiv 28 \mathrm{mpg}$, Mode \equiv multimodal

Examine this data

Example

- The table and dotplot below displays the Environmental Protection Agency's estimates of highway gas mileage in miles per gallon (MPG) for a sample of 24 model year 2009 midsize cars.

MODEL	MPG	MODEL	MPG	MODEL	MPG
Acura RL	22	Dodge Avenger	30	Mercedes-Benz E350	24
Audi A6 Quattro	23	Hyundai Elantra	33	Mercury Milan	29
Bentley Arnage	14	Jaguar XF	25	Mitsubis hi Galant	27
BMW 5281	28	Kia Optima	32	Nissan Maxima	26
Buick Lacrosse	28	Lexus GS 350	26	Rolls Royce Phantom	18
Cadillac CTS	25	Lincolon MKZ	28	Saturn Aura	33
Chevrolet Malibu	33	Mazda 6	29	Toyota Camry	31
Chrysler Sebring	30	Mercedes -Benz E350	24	Volks wagen Passat	29

Describe the shape, center, and spread of the distribution. Are there any outliers?

SHAPE: skewed left or neg. skewed

CENTER: mean, Median, mode?

SPREAD: range is
$19(33-14)$

Comparing the Mean and the Median

- The mean and median measure center in different ways, and both are useful.
- Don't confuse the "average" value of a variable (the mean) with its "typical" value, which we might describe by the median.

Comparing the Mean and the Median

The mean and median of a roughly symmetric distribution are close together.

If the distribution is exactly symmetric, the mean and median are exactly the same.

In a skewed distribution, the mean is usually farther out in the long tail than is the median.

Stemplots (Stem-and-Leaf Plots)

Another simple graphical display for small data sets is a stemplot. Stemplots give us a quick picture of the distribution while including the actual numerical values.

How to Make a Stemplot

1) Separate each observation into a stem (all but the final digit) and a leaf (the final digit).
2) Write all possible stems from the smallest to the largest in a vertical column and draw a vertical line to the right of the column.
3) Write each leaf in the row to the right of its stem.
4) Arrange the leaves in increasing order out from the stem.
5) Provide a key that explains in context what the stems and leaves represent.

Measuring Center

- Use the data below to calculate the mean and median of the commuting times (in minutes) of 20 randomly selected New York workers.

Example

10	30	5	25	40	20	10	15	30	20	15	20	85	15	65	15	60	60	40	45

$$
\bar{x}=\frac{10+30+5+25+\ldots+40+45}{20}=31.25 \text { minutes }
$$

0	5	
1	005555	
2	0005	
3	00	Key: $4 \mid 5$
4	005	represents a
5		New York
6	005	worker who
7		reported a 45- minute travel
8	5	time to work.

$$
M=\frac{20+25}{2}=22.5 \text { minutes }
$$

Stemplots (Stem-and-Leaf Plots)

These data represent the responses of 20 female AP Statistics students to the question, "How many pairs of shoes do you have?" Construct a stemplot.

50	26	26	31	57	19	24	22	23	38
13	50	13	34	23	30	49	13	15	51

1	1	93335	1	33359
2	2	664233	2	233466
3	3	1840	3	0148
4	4	4	Key: 4\|9 represents a female student who reported having 49	
5	5	0701	5	0017
Stems	Add leaves	Order leaves	pairs of shoes. Add a key	

Splitting Stems and Back-to-Back Stemplots

- When data values are "bunched up", we can get a better picture of the distribution by splitting stems.
- Two distributions of the same quantitative variable can be compared using a back-to-back stemplot with common stems.

Females													Males						
50	26	26	31	57	19	24	22	23	38	14	7	6	5	12	38	8	7	10	10
13	50	13	34	23	30	49	13	15	51	10	11	4	5	22	7	5	10	35	7

Females
Males

| 0 |
| :--- | :--- |
| 0 |
| 1 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| 4 |
| 5 |
| 5 |

Females	Males		
	0	4	
333	0	555677778	
95	1	0000124	
4332	2	2	
66	2		
410	3		
8	3	58	
	9	4	
100	5		
7	5		

Key: 4|9
represents a student who reported having 49 pairs of shoes.

Comparing Distributions

Some of the most interesting statistics questions involve comparing two or more groups.
Always discuss shape, center, spread, and possible outliers whenever you compare distributions of a quantitative variable.

Compare the distributions of household size for these two countries. Don't forget your SOCS!

Chapter 3.3 - Numerical Data: Frequency Distributions using Histograms

Percentage of graduating seniors, in the year 2004, with scaled scores in the specified ranges, for the math division of the SAT

Histograms

- Quantitative variables often take many values. A graph of the distribution may be clearer if nearby values are grouped together.
The most common graph of the distribution of one quantitative variable is a histogram.

How to Make a Histogram

1) Divide the range of data into classes of equal width.
2) Find the count (frequency) or percent (relative frequency) of individuals in each class.
3) Label and scale your axes and draw the histogram. The height of the bar equals its frequency. Adjacent bars should touch, unless a class contains no individuals(observations).

Example

Making a Histogram

- The table below presents data on the percent of residents from each state who were born outside of the U.S.

Practice Example: Promiscuous Queen Bees (p.99)

- Use your TI-84 calculator to input the data regarding Queen Bees and their number of partners during flight.

EDLCALC TESTS
2, jorthe
$3: 50 r t \square$
4: Elriot

- From this data, we want to generate a histogram to graphically represent the data.

Practice Example: Promiscuous Queen Bees (p.99)

- Generate a Histogram
with you TI-84
calculators
- What is your window setting?
- Can you change the intervals?

- Questions

Histograms on TI-84

You can change the intervals:

- You can change the zoom:

ZOOM MEMORY 1:ZBox
 2:Zoom In
 3:Zoom Out
 4:ZDecimal
 5:ZSquare
 6:ZStandard
 7:ZTri9
 8:7Integer
 9لZoomStat

Bar Chart or Histogram?

Age At Presentation

Prevention and Management of Calcaneal Apophysitis Children: An Overuse Syndrome. Lyle J. Micheli, M.D., and M. Lloyd Ireland, M.D.
Journal of Pediatric Orthopedics 7:34-38@ 1987 Raven Press, New York

Using Histograms Wisely

- Here are several cautions based on common mistakes students make when using histograms.

Cautions

1) Don't confuse histograms and bar graphs.
2) When comparing distributions with different numbers of observations (different size samples) use percents instead of counts on the vertical axis (relative frequency).
3) Choose the best graphical display: bar chart, dot plot, or histogram. Just because a graph looks nice, it's not necessarily a meaningful display of data.
