Name \qquad ID: 1
© 2021 Ku ta S oftwa re L L C

Date \qquad Period \qquad

ANSWERS

Find the median, mean, lower quartile, upper quartile, and interquartile range for each data set.

1) Games per World Series

$$
\text { Median }=6, \text { Mean }=5.82
$$

$$
Q_{1}=5, Q_{3}=7 \text { and } \mathrm{IQR}=2
$$

2) European Spacecraft Launches

Median $=10$, Mean $=9.11$, $Q_{1}=4.5, Q_{3}=12$ and $\mathrm{IQR}=7.5$

Draw a box-and-whisker plot for each data set.
3)

Draw a stem-and-leaf plot for each data set.

5)

Nobel Laureates

Name	Age	Name	Age	Name	Age
Eric Stark Markin	56	Robert Geoffrey Edwards	85	James Alexander Mirrlees	60
Christopher Albert Sims	69	Derek Alton Walcott	62	David Morris Lee	65
Jean-Marie Pierre Lehn	48	Steven Weinberg	46	Eric Francis Wieschaus	48
Rita Levi-Montalcini	77	Günter J. Blobel	63	Peter Courtland Agre	54
Paul Delos Boyer	79	Jules Alphonse Hoffmann	70	Martin John Evans	66

Stem	Leaf		
4	688		
5	46		
6	0123569		
7	079		
8	5		

Key: $5 \mid 46$
Indicates that the age of two Nobel Laureates were
54 and 56 years old, respectively
6)

Basketball Tournament

School	Appearances	School	Appearances	School	Appearances
Mississippi State	10	Iowa State	17	Wisconsin	21
Hampton	5	Vermont	5	Sam Houston State	2
Saint Louis	9	Marquette	31	Western Carolina	1
Loyola Marymount	4	North Carolina Central	1	Drexel	4
Villanova	34	Colorado State	10	South Alabama	8
George Mason	6	Kentucky	54		

Stem	Leaf
0	1124455689
1	007
2	1
3	14
4	
5	4

Key: $\quad 2 \mid 1$
Indicates that the number of appearances for one team, Wisconsin, was 21 tournament appearances

Solve each percent problem.

7) 78.9 is 2% of what?

3945
9) What percent of 98 is 139 ?

Use the proportion

$$
\begin{aligned}
\frac{\%}{100} & =\frac{\text { part }}{\text { whole }} \\
\frac{p}{100} & =\frac{139}{98}
\end{aligned}
$$

so $98 p=13900$

$$
p=141.84
$$

139 is 141.84% of 98
Find the median and mean for each data set.

Median $=44$ and Mean $=40.94$
8) 103.2 is what percent of 58.2 ?
177.3\%
10) What is 2.6% of 32.4 ?

Use the proportion

$$
\begin{aligned}
& \frac{\%}{100}=\frac{\text { part }}{\text { whole }} \\
& \frac{2.6}{100}=\frac{\text { part }}{32.4} \\
& \text { or } 0.026(32.4)=\text { part } \\
& \quad p=0.8424
\end{aligned}
$$

0.8424 is 2.6% of 32.4
11) Annual Precipitation (Inches)

Stem	Leaf
1	4
2	146
3	112
4	24567
5	458
6	06

Key: $3 \mid 1=31$
12) Per Capita Income by Country

Stem	Leaf
0	112222556677
1	
2	34
3	3
4	3

Key: $2 \mid 3=23,000$
Median $=5,500$ and Mean $=10,562.5$

Convert the z -scores to percentiles (answers on next page)
13) z-score of 1.24
14) z-score of -0.87
15) z-score of 0
16) z-score of 2.06

Convert the percentiles to z-scores
19) the $27^{\text {th }}$ percentile
20) the $90^{\text {th }}$ percentile
21) a z -score that corresponds to the top 20 percent

HW \#12 - ANSWERS

Convert the z-scores to percentiles
13) z-score of 1.24
is the same as 0.8925 which is approx. the $\mathbf{8 9}^{\text {th }}$ percentile
15) z-score of 0
is the same as 0.5000 which is exactly the $\mathbf{5 0}^{\text {th }}$ percentile
14) z-score of -0.87
is the same as 0.1922 which is approx. the $\mathbf{1 9}^{\text {th }}$ percentile
16) z-score of 2.06
is the same as 0.9803 which is approx. the $\mathbf{9 8}^{\text {th }}$ percentile

Draw a histogram for each data set. (Use intervals of \$5000 for \#17)
17) Single Family Home Prices

18)

Average Lifespan

Animal	Years
Gorilla	20
Newt	7
Gouldian finch	6
Galapagos Land Tortoise	193

Animal	Years
Cow	22
Chicken	15
Sheep	15
Caiman	28

Animal	Years
Conure	25
Bee (Worker)	1.5
Golden Hamster	4
Humming Bird	8

Animal	Years
African Grey Parrot	50
Rabbit	9
Whistling Duck	15

Convert the percentiles to z-scores
19) the $27^{\text {th }}$ percentile

First, find the decimal form,
Which is 0.2700 on Table
Closest decimals are
0.2709 and 0.2676

Now convert to z-scores
-0.61 and -0.62
Last, Describe in context
The $27^{\text {th }}$ percentile is the
Same as a z-score of approx.
$z=-0.615$
20) the $90^{\text {th }}$ percentile

Find the decimal form, Which is 0.9000 on Table Closest decimals are 0.8997 and 0.9015 Now convert to z-scores 1.28 and 1.29
the $90^{\text {th }}$ percentile same as a z-score of approx..

$$
z=1.285
$$

21) a z-score that corresponds to the top 20 percent

What percentile does this position correspond to?

This is the $80^{\text {th }}$ percentile, or 0.8000
Find this decimal on form,
Closest decimals are
0.7995 and 0.8023

Now convert to z-scores
0.840 and 0.850

Last, Describe in context
The $80^{\text {th }}$ percentile, which separates the top 20 percent,
is the same as a z -score of approx. $z=\mathbf{0 . 8 4 5}$
22) $-2 \sqrt{15}(4-3 \sqrt{6})$
A) $5 \sqrt{5}-25 \sqrt{3}$
B) $8 \sqrt{2}$
*C) $-8 \sqrt{15}+18 \sqrt{10}$
D) $4 \sqrt{2}+5$
E) $-3 \sqrt{30}+3$

Find the 5 Number summary \& interquartile range for each data set.

23) | Age at First Job | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | 19 | 15 | 17 | 16 | 12 | 17 |
| 18 | 18 | 14 | 17 | 18 | 13 | 12 |
| 13 | 17 | | | | | |
| 4 | | | | | | |
24) | Annual Household Income | | | |
| ---: | ---: | ---: | ---: |
| 12,650 | 13,050 | 19,950 | 41,100 |
| 7,000 | 11,100 | 23,050 | 18,300 |
| 34,950 | 14,800 | 12,500 | 10,400 |
| 31,400 | 18,650 | 8,650 | 18,000 |

Five number summary:

Min	Q_{1}	Median	Q_{3}	Max	Min	Q_{1}	Median	Q_{3}	Max
12	13.5	16.5	17.5	19	7000	11,800	18,000	21,500	41,100
$I Q R=4.0$					$I Q R=10,300$				

25) What is the unit of analysis in statistics?

Give an example that was provided within the textbook, Naked Statistics

Between pages 39 to 42 this concept is described and examples provided.
Unit of analysis could be different "units" or measures from the same data.

