

ANSWERS

Find the median, mean, lower quartile, upper quartile, and interquartile range for each data set.

Median = 6, Mean = 5.82, $Q_1 = 5, Q_3 = 7$ and IQR = 2 2) European Spacecraft Launches

Median = 10, Mean = 9.11, $Q_1 = 4.5, Q_3 = 12$ and IQR = 7.5

Draw a box-and-whisker plot for each data set.

Draw a stem-and-leaf plot for each data set.

.

5)

Nobel Laureates

Name	Age
Eric Stark Markin	56
Christopher Albert Sims	69
Jean-Marie Pierre Lehn	48
Rita Levi-Montalcini	77
Paul Delos Boyer	79
Françoise Barré-Sinoussi	61

Name	Age
Robert Geoffrey Edwards	85
Derek Alton Walcott	62
Steven Weinberg	46
Günter J. Blobel	63
Jules Alphonse Hoffmann	70

Name	Age
James Alexander Mirrlees	60
David Morris Lee	65
Eric Francis Wieschaus	48
Peter Courtland Agre	54
Martin John Evans	66

Stem	Leaf
4	688
5	4 6
6	0123569
7	079
8	5

Key: 5 | 4 6

Indicates that the age of two Nobel Laureates were

10 5

34 6

54 and 56 years old, respectively

Appearances

6)

School

Hampton

Saint Louis

Villanova

Bask	tetl	ball	Tournament

es	School	Appearances
10	Iowa State	17
5	Vermont	5
9	Marquette	31
4	North Carolina Central	1
34	Colorado State	10
6	Kentucky	54

School	Appearances
Wisconsin	21
Sam Houston State	2
Western Carolina	1
Drexel	4
South Alabama	8

Stem | Leaf

George Mason

Loyola Marymount

Mississippi State

Stem	Leaf
0	1 1 2 4 4 5 5 6 8 9
1	007
2	1
3	14
4	
5	4
Key:	2 1

Indicates that the number of appearances for one team, Wisconsin, was 21 tournament appearances

Solve each percent problem.

7) 78.9 is 2% of what?3945

9) What percent of 98 is 139?

Use the proportion

$$\frac{\%}{100} = \frac{part}{whole}$$
$$\frac{p}{100} = \frac{139}{98}$$
so $98p = 13900$
$$p = 141.84$$

139 is 141.84% of 98

Find the median and mean for each data set.

11) Annual Precipitation (Inches)

Stem	Leaf
1	4
2	146
3	112
4	24567
5	458
5 6	06
Key: 3 1	

Median = 44 and Mean = 40.94

8) 103.2 is what percent of 58.2?177.3%

10) What is 2.6% of 32.4?

Use the proportion

 $\frac{\frac{9}{100}}{\frac{100}{100}} = \frac{part}{whole}$ $\frac{2.6}{100} = \frac{part}{32.4}$ or 0.026(32.4) = part p = 0.84240.8424 is 2.6% of 32.4

12) Per Capita Income by Country

Stem	Leaf
0	1 1 2 2 2 2 5 5 6 6 7 7
1	
2 3 4	3 4
3	3
4	3
	= 23,000

Key: 2|3 = 23,000Median = 5,500 and Mean = 10,562.5 Convert the z-scores to percentiles (answers on next page)

13) *z-score* of 1.24 14) *z-score* of -0.87

15) *z-score* of 0

16) *z-score* of 2.06

Convert the percentiles to *z*-scores

19) the 27th percentile 20) the 90th percentile

21) a z-score that corresponds to the top 20 percent

HW #12 - ANSWERS

Convert the z-scores to percentiles 13) *z-score* of 1.24 is the same as 0.8925 which is approx. the **89th** percentile

14) *z-score* of -0.87 is the same as 0.1922 which is approx. the **19**th percentile

15) *z-score* of 0
is the same as 0.5000 which is *exactly* the **50th** percentile

16) *z-score* of 2.06 is the same as 0.9803 which is approx. the **98th** percentile

Draw a histogram for each data set. (Use intervals of \$5000 for #17)

17)	S	ingle Fan	nily H	ome Pr	ices
	209,700	208,50	0 2	11,300	211,500
	196,900	207,00	0 2	15,300	223,300
	227,600	195,20	0 1	86,300	181,100
	190,100	206,40	0 2	16,700	208,200
	221,400				
	5				
	4				
	3				
	2				
	1				
	180,000 185,000	190,000 200,000 200,000	210,000 215,000	220,000 225,000	230,000

			Average	e Lifespan			
Animal	Years	Animal	Years	Animal	Years	Animal	Yea
Gorilla	20	Cow	22	Conure	25	African Grey Parrot	:
Newt	7	Chicken	15	Bee (Worker)	1.5	Rabbit	
Gouldian finch	6	Sheep	15	Golden Hamster	4	Whistling Duck	
Galapagos Land Tortoise	193	Caiman	28	Humming Bird	8		
8							
8							

Convert the percentiles to *z*-scores

19) the 27 th percentile	20) the 90 th percentile
First, find the decimal form,	Find the decimal form,
Which is 0.2700 on Table	Which is 0.9000 on Table
Closest decimals are	Closest decimals are
0.2709 and 0.2676	0.8997 and 0.9015
Now convert to <i>z</i> -scores	Now convert to <i>z</i> -scores
-0.61 and -0.62	1.28 and 1.29
Last, Describe in context	
The 27 th percentile is the	the 90 th percentile
Same as a z-score of approx.	same as a z-score of approx
z = -0.615	z = 1.285

21) a *z*-score that corresponds to the top 20 percent

What percentile does this position correspond to?

This is the 80th percentile, or 0.8000 Find this decimal on form, Closest decimals are 0.7995 and 0.8023 Now convert to *z*-scores 0.840 and 0.850 Last, Describe in context The 80th percentile, which separates the top 20 percent, is the same as a *z*-score of approx. z = 0.845

22)
$$-2\sqrt{15}(4-3\sqrt{6})$$

A) $5\sqrt{5}-25\sqrt{3}$
B) $8\sqrt{2}$
*C) $-8\sqrt{15}+18\sqrt{10}$
D) $4\sqrt{2}+5$
E) $-3\sqrt{30}+3$

Find the 5 Number summary & interquartile range for each data set.

23)		Age at First Job				24)) Annual Household Income				
	15 1	9 15	17	16 12	17		12,650	13,050	19,950	41,100	
	18 1	8 14	17	18 13	12		7,000	11,100	23,050	18,300	
	13 1	7					34,950	14,800	12,500	10,400	
	4						31,400	18,650	8,650	18,000	
Five number summary:											
Min	Q_1	Median	<i>Q</i> ₃	Max		Min	Q_1	Median	Q_3	Max	
12	13.5	16.5	17.5	19		7000	11,800	18,000	21,500	41,100	
IQR = 4.0							IQR = 10,300				

25) What is the unit of analysis in statistics? Give an example that was provided within the textbook, Naked Statistics

Between pages 39 to 42 this concept is described and examples provided.

Unit of analysis could be different "units" or measures from the same data.