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When points in a scatterplot exhibit a linear pattern and the residual plot does not reveal 
problems with the linear fit, the least-squares line is an appropriate way to summarize and 
analyze the relationship between x and y. A linear relationship is easy to interpret, 
departures from the line are easily detected, and using the line to predict y from our 
knowledge of x is straightforward. Occasionally a scatterplot or residual plot exhibits a 
curved pattern, indicating a more complicated relationship between x and y.   Nonlinear 
regression is one of the tools used for addressing these complications.  The general ideas 
of nonlinear fits are the same as you have experienced with straight line fits: 
 

What you have done with 
straight line fits 

What you will do with 
non-straight line fits 

 
Capture linear relationships using  
a linear function 

Capture nonlinear relationships 
using a non-linear function 

Predict the value of a response 
variable, informed by the value of 
an explanatory variable 

Predict the value of a response 
variable, informed by the value of 
an explanatory variable 

Assess whether the linear function 
is an appropriate summary 
description of the data, using 
residual plots 

Assess whether the non-linear 
function is an appropriate summary 
description of the data, using 
residual plots 

 
A data analyst might decide to use nonlinear fits for two reasons.  First, inspections of a 
scatterplot and residual plot may indicate a clear non-linear pattern, one which could be 
more effectively summarized using a non-linear elementary mathematical function from 
algebra.  As we will soon see, we have a variety of elementary functions to choose from.   
Second, the scientific community may have settled on the nature of the relationship 
between x and y as nonlinear, and the data analysis task is to estimate the parameters of 
the accepted function by finding the nonlinear best-fit curve.  In the description to follow, 
it is convenient to separate non-linear fits into 2 general categories: those accomplished 
using polynomial functions, and those accomplished using what are known as 
transformations of variables.   
 
Polynomial regression 

 
In the article “Quantifying spatiotemporal overlap of Alaskan brown bears and people” 
(Journal of Wildlife Management [2005]: 810-817), investigators were concerned about 
human activity in the presence of foraging bears. Their specific concern was that sport 
fishing and boating might be displacing bears from sufficient access to salmon due to the 
presence of humans and their loud watercraft.  Part of their research involved 
documenting the fishing activity of brown bears (Ursus arctos) through time.  
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Date 
(June 1 = 1) 

Bear usage 
Bear-hr/day 

Date 
(June 1 = 1) 

Bear usage 
Bear-hr/day 

Date 
(June 1 = 1) 

Bear usage 
Bear-hr/day 

11 11.3 24 11.3 40 22.0 
12 15.1 25 18.4 41 26.0 
13 6.6 27 16.2 44 10.5 
14 12.9 28 19.5 45 18.6 
15 12.1 31 35.8 46 21.1 
17 18.1 32 37.1 49 11.9 
18 20.9 33 45.7 50 13.7 
19 17.6 36 34.8 51 13.7 
20 11.0 37 25.6 54 6.3 
21 24.6 38 26.7 55 1.8 

 
The scatterplot at right displays the 
data on bear usage (bear-hours / day) 
vs. date (in days, 1 = June 1st) in 2003 
at Wolverine Creek and Cove, Alaska.    
It is clear from the pattern of points that 
no linear best-fit line will do a 
reasonable job of describing the 
relationship between x and y.  The 
points in the scatterplot appear to rise, 
level off near day 30 (June 30), and 
then fall as the days move through the 
month of July.  The relationship 
between the amount of bear usage of Wolverine Creek and Cove and time is more 
complex than is captured by a linear relation.   
 
The usual interpretation of the slope of a best fit line is that as the explanatory variable 
changes by 1 unit, on average the response variable changes by a constant amount equal 
to the slope.  These data do not exhibit a constant average increase in bear usage exists.  
Rather, it appears that the average changes in the y variable vary with x; the amount of 
change in y per unit change in x is a function, not a constant.   
 
 
Quadratic functions exhibit this rise / level off / fall sort of appearance, and it would seem 
that a quadratic function of the form 2

1 2ŷ a b x b x= + +  is a more reasonable description of 
the pattern of points than a straight-line model.  The values of the coefficients 

1 2,  ,  and a b b  in this function can be determined to obtain a good fit to the data.  (Note 
that the choice of the symbols for the coefficients is consistent with straight-line 
relationships, not with the typical algebraic description of a quadratic function, 

( ) 2y f x ax bx c= = + + .)     
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As is true of linear functions, algebra will enable one to initially interpret the graph and 
coefficients of a quadratic function: 
 

• The sign of the coefficient of the quadratic term, 2b , indicates whether the  
      quadratic curve opens up or down 

• The maximum value of the quadratic function occurs where 1

22
bx
b

= −  

• The maximum value is estimated to be 1

22
by f
b

 
= − 

 
 

 
What are the best choices for the values of 1 2,  ,  and a b b ?  In fitting a line to data, we used 
the principle of least squares to guide our choice of slope and intercept.  Least squares 
can be used to fit a quadratic function as well.  The deviations ˆ, ,i iy y− are still 
represented by vertical directed distances in the scatterplot, but now they are vertical 
distances from the points to a parabola shown below.  The task of the data analyst is to 
find values for the coefficients in the quadratic function so that the sum of squared 
deviations is as small as possible. 
 

                             
                                                 
 
 
 
 
 
 
 
 
 
 
 

For a quadratic regression, the least squares estimates of a, b1 and b2 are those 

values that minimize the sum of squared deviations, 2ˆ( )y y−∑ , where 

2
1 2ŷ a b x b x= + + . 
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For quadratic regression, a measure that is useful for assessing fit is 2 SSResid1
SSTo

R = −  

where ( )2ˆResidSS y y= −∑ .  Notice that the measure R2 is defined in a manner 

analogous to r 2 for simple linear regression and is interpreted in a similar fashion. The 
notation r 2 is used only with linear regression to emphasize the relationship between r 2 
and the correlation coefficient, r, in the 
straight-line fit.  In nonlinear regression the 
symbol used is 2R .  The formulas for 
computing the least-squares estimates in the 
general case are somewhat complicated 
without using matrices, so we will rely on 
statistical software packages to do the 
computations for us.  Part of the output from 
fitting a quadratic regression to these data is 
shown at right. 
 
 
The least squares coefficients are: 1 220.9671      2.9958     0.0463a b b= − = = − , and the 
least squares quadratic equation is:  2ˆ 20.9671 2.9958 0.0463y x x= − + − . 
 
If a least-squares line were fit to these 
data, it is not surprising that the line would 
not do a credible job of describing the 
relationship ( 2 0.000001r = ).  Both the 
scatterplot and the residual plot show a 
distinct curved pattern.  The residual plot 
for the quadratic regression is shown 
below.  Notice that there is no strong 
pattern in the residual plot for the 
quadratic case.  For the quadratic 
regression, 2 0.556R = (as opposed to 
essentially zero for the least squares line).  This means that 55.6% of the variability in the 
bear prevalence can be explained by an approximate quadratic relationship between bear 
prevalence and date of observation. 
 
Linear regression and quadratic regression are special cases of polynomial regression. A 
least squares polynomial regression curve is described by a function of the form: 
 
              2 3

1 2 3ˆ ... k
ky a b x b x b x b x= + + + + + . 
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Recall that ( ) 2 3
1 2 3 ... k

kp x a b x b x b x b x= + + + + + is referred to as a kth degree 
polynomial.  The case of k = 1 results in linear regression ( 1ŷ a b x= + ) and k = 2 yields a 
quadratic regression ( 2

1 2ŷ a b x b x= + + ).   
 
A less frequently (than quadratic) encountered special case is for k = 3, a cubic regression 
curve, 2 3

1 2 3ŷ a b x b x b x= + + + . While quadratic curves have only a single bend, cubic 
curves tend to have two bends, as shown in (c) below. 
 

 
A cubic fit was performed in the article, “Perceiving musical time” (Music Perception: 
An Interdisciplinary Journal [1990]:213-251).  Twenty-three experienced music 
researchers and composers were asked to listen to a solo piano piece, comprised of 18 
segments.  The piece was described in the article as “…atonal with a pitch structure 
organized according to the principles of 12-note serialism…based on proportions derived 
from the Fibonacci series.”  Their data for the 18 segments are shown below: 
 

Actual 
Location 

Estimated 
Location 

Actual 
Location 

Estimated 
Location 

Actual 
Location 

Estimated 
Location 

0.84 0.84 0.51 0.54 0.23 0.27 
0.81 0.76 0.48 0.39 0.21 0.24 
0.79 0.50 0.45 0.44 0.18 0.27 
0.71 0.51 0.28 0.56 0.17 0.20 
0.68 0.49 0.28 0.41 0.15 0.10 
0.65 0.53 0.24 0.24 0.12 0.03 

 
After listening to the piece twice, the musicians 
were given copies of different sections of the 
musical score and asked to locate the relative 
position of the segments in the piece.  As an 
example, if the musician thought a section of 
music occurred three-fourths of the way through 
the piece, he or she would indicate 0.75.   The 
“Estimated Location” is the median of the values 
given by the subjects in the study. 
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Quadratic fit 
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Quadratic residual plot 
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Cubic residual plot 

 

The relationship between x and y does not appear to be linear – it seems to have a bend in 
it.  In the light of this, one might try using a quadratic regression to describe the 
relationship between the estimated and actual relative positions of the sections of the 
musical piece.  Statistical software was used to fit a quadratic regression function and to 
compute the corresponding residuals.  The least-squares quadratic regression is:  

2ˆ 0.0244 1.1523 0.4657E A A= + −  Plots of the quadratic regression curve and the 
corresponding residual plot (below) have brought out a pattern we didn’t notice in the 
scatterplot before.  (This capability of residual plots to bring out the worst in graphs is 
one of the reasons we use them.)  In this case the residual plot shows a curved pattern 
between the residuals and x – not something we like to see in a residual plot!   Looking 
again at the scatterplot, we see that a cubic function might be a better choice than the 
quadratic function; assisted by the residual plot, we now see what appears to be two 
“bends” in the curved relationship – one in the neighborhood of x = 0.3 and another in 
the neighborhood of x = 0.7.   
 
Computer software was used to fit a cubic regression, resulting in the curve shown in the 
quadratic and cubic fits.  The cubic regression is:  
 

2 3ˆ 0.6284 6.959 14.3823 9.6594E A A A= − + − + . 
 
The cubic regression and the corresponding residual plots for the quadratic and cubic fits 
are shown below.  The plots of the cubic fits do not reveal any troublesome patterns that 
would suggest we need to consider a choice other than cubic regression.  And other good 
news is that 2R has increased from 0.75 to 0.88, also suggesting the cubic fit is a better fit 
to the data than the quadratic fit. 
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The investigators’ inspection of the original scatterplot suggested to them that the 
subjects’ judgments of the relative positions of the musical segments were fairly close to 
the actual positions at the beginning and end of the musical piece, but not so in the 
middle.  They felt this might be due to a greater sense by the subjects of musical progress 
in the beginning and near the end of the piece, whereas the central part of the piece is 
“something of a mixture, where different ideas are combined and juxtaposed, so that the 
sense of goal-directed musical progress is weakened.”   [Sounds good to me!] 
 
 
 
Transformations 
 
In general, our strategy for performing nonlinear fits using transformations is to find a 
way to legally change the x and/or y values so that a scatterplot of the transformed data 
has a linear appearance. A transformation (sometimes called a re-expression) involves 
using a simple function of a variable in place of the variable itself, to induce a linear 
relation between the transformed variables. For example, instead of trying to describe the 
relationship between x and y, it might be easier to describe the relationship between x  
and y or between x and log(y). And, if we can describe the relationship between, say, x  
and y, we will still be able to predict the value of y for a given x value.  In addition, the 
interpretation of the slope is not only possible but reasonable.   Common transformations 
involve taking square roots, logarithms, or reciprocals.  To introduce you to the 
mechanics of using transformations, we will consider a square root transformation. 
 
 
River Water Velocity and Distance from Shore 
 
As fans of white-water rafting know, a river flows more slowly close to its banks 
(because of friction between the river bank and the water). To study the nature of the 
relationship between water velocity and the distance from the shore, data were gathered 
on velocity (in centimeters per second) of a river at different distances (in meters) from 
the bank. Suppose that the resulting data were as follows: 
 
Distance      .5    1.5    2.5    3.5    4.5    5.5    6.5    7.5    8.5    9.5 
Velocity  22.00  23.18  25.48  25.25  27.15  27.83  28.49  28.18  28.50  28.63  
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A graph of the data exhibits a curved pattern, as seen in both the scatterplot and the 
residual plot from a linear fit. 

                                                  Plots for the data 
                   (a) scatterplot of the river data;      (b) residual plot . 
 
Let’s try transforming the x values by replacing each x value by its square root. We 
define 
 
 'x x=  
 
The resulting transformed data are given in Table 1 below. 
 
      Original and transformed data of the river velocity 
 
             Original Data     Transformed Data 

  x             y            x'      y 
  .5   22.00   0.7071   22.00  
1.5   23.18   1.2247   23.18  
2.5   25.48   1.5811   25.48  
3.5   25.25   1.8708   25.25  
4.5   27.15   2.1213   27.15  
5.5   27.83   2.3452   27.83  
6.5   28.49   2.5495   28.49  
7.5   28.18   2.7386   28.18  
8.5   28.50   2.9155   28.50  
9.5   28.63   3.0822   28.63  
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The regression equation is 
Velocity = 20.1 + 3.01 SqrDist 
 
 
Predictor     Coef  SE Coef      T      P 
Constant   20.1102   0.6097  32.99  0.000 
SqrDist     3.0085   0.2726  11.03  0.000 
 
 
S = 0.629237   R-Sq = 93.8%   R-Sq(adj) = 93.1% 
 

Figure 11 

The scatterplot (a) is of y versus x' (or equivalently y vs. x ). The pattern of points in this 
plot looks linear, and so we fit a least-squares line using the transformed data.  
 
 
 
 
 
 
 
 
 
 
 
 

Plots for the transformed river data: 
(a) scatterplot of y versus x'; (b) residual plot 

 
 
Minitab output from this regression is shown below.  The residual plot (b) shows no 
indication of a pattern. The resulting regression equation is: ˆ 20.1 3.01 'y x= + or, 
equivalently, ˆ 20.1 3.01y x= +  .  The values of 2r and es indicate that a straight line is a 
reasonable way to describe the 
relationship between y and x'. 
To predict velocity of the river 
at a distance of 9 meters from 
shore, we first compute 

' 9 3x x= = =  and then use 
the sample regression line to 
obtain a prediction of y:  

ˆ 20.1 3.01 ' 20.1 3.01(3) 29.13.y x= + = + =  
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More Transformations 
 
 In the previous example, transforming the x values using the square root function worked 
well. We will now consider other transformations of variables.  It is convenient to 
separate the transformations into two categories, for reasons that will become clear 
below: 

• Situations where the explanatory variable (x) only is transformed 
• Situations where the response variable (y) is transformed 

While there is only one linear function, and only one description of the average change in 
y per unit change in x – constant – there are different patterns of values for nonlinear 
functions: 

• There may be a single extreme (maximum or minimum) value of y.   With 
increasing values of x, the expected values of y may rise then fall, or fall then rise. 
 

• The increases in y per unit increase in x may be smaller for small values of x, or 
the increases in y per unit increase in x may be larger for small values of x. 
 
 

• The increases may be expressed in terms of proportions of x and/or y, not in units 
of x and/or y. 
 
 

To help cope with this variety of ways data can be non-linear, there is a variety of 
functions we might try to fit to our data as we attempt to describe or explain the 
relationship between the variables.  Some examples of elementary (second year algebra) 
functions, together with the associated transformations of variables leading to linearity, 
are collected below.   
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Functions (with associated transformations) 
 
 
 
 
 
 
 
 
             ( )' logy y=                                                          ' log( )x x=  
 
 
 
 
 
 
 
 
          No transformation                                                    1'x x=  

 
 
 
 
 
 
  
                                                                                             1'x x=  

 
 
 
 
 
 
 
 
 
 
 
 
 

                  'x x=                                                   ' log( )x x= ; ( )' logy y=  
 
 

Exponential 
' log( )y y=  

Logarithmic 
' log( )x x=  

 

Quadratic 
(No transformation) 

Reciprocal 
 

Square root  
Power 
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The table below gives some guidance and summarizes some of the properties of the most 
commonly used transformations.  
 
Commonly used transformations 
 

Transformation Mathematical 
Description 

Try This Transformation 
if you believe that… 

No transformation ŷ a bx= +  The change in y is constant as x 
changes. A 1-unit increase in x is 
associated with, on average, an 
increase of b in the value of y. 
 

Square root of x ŷ a b x= +  The change in y is not constant. A 1-
unit increase in x is associated with 
smaller increases or decreases in y 
for larger x values. 
 

Log of x* 10ˆ log ( )y a b x= +  
or 
ˆ ln( )y a b x= +  

The change in y is not constant. A 1-
unit increase in x is associated with 
smaller increases or decreases in the 
value of y for larger x values. 
 

Reciprocal of x 1ŷ a b
x

 = +  
 

 
The change in y is not constant, as 
was true for the log function.  Here,  
y has a limiting value of a as x 
increases, unlike the log function. 
 

Log of y*  
(Exponential growth  
or decay) 
 
Log of y* and log of x 
(“Power” function) 

log( )y a bx= +  
or 
ln( )y a bx= +  
 
 ( )log( ) logy a b x= +  
or 
( ) ( )ln lny a b x= +  

The change in y associated with a 1-
unit change in x is proportional to x. 
 
 
The proportional change in y 
associated with a 1-unit change in x 
is proportional to x. 
 

 
*The values of a and b in the regression equation will depend on whether log10 or ln is 
used, but the ˆ 'y s  and 2r  values will be identical.   Notice that the two “log of y” 
transformations involve transforming the response variable.   
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The power transformation is a particularly interesting transformation.  The power 
function, ,by ax= is transformed to linearity by taking the logarithm (either common or 
natural) of both sides of the equation: 
 

                           
( )

log( ) log( )
log( ) log log

b

b

y ax
y ax
y a b x

=

=

= +

 

 
Thus, ' log( ) and ' log( )x x y y= = result in a linear function, ' 'y a bx= + .  What is 
interesting about the power function is that it includes raising to powers and taking roots.  
If b is a positive integer, a monomial results; if b is a fraction, such as one-half or one-
third, the result is the same as taking a square root or cube root.  In addition, if b is a 
negative integer, a reciprocal transformation is the result.   The plots shown are for 

1 1,  ,  ,  1,  2,  3, and 13 2
by x b= = − .    

 
Suppose that you have a batch of female veiled chameleons (Chamaeleo calyptratus) 
sitting around reproducing, as did Adams, Andrews, and Noble, described in their report, 
“Eggs under Pressure: Components of Water Potential of Chameleon Eggs during 
Incubation.” (Physiological and Biochemical Zoology[2010]:207-214).   
 
 

 
 
Of course, as you know, “embryos are diapausing gastrulae when eggs are laid and 
diapause persists several months.”  Further, realizing that “osmotic potential is generally 
assumed to dominate the net water potential of eggs, resistance of the eggshell to 
stretching also affects egg water potential,” you decide to determine “osmotic potentials 
and pressure potentials” of the eggs.  Skipping quite a bit of further discussion, you 
finally get data on the relative egg mass (Egg mass / Original Egg Mass) vs. Egg Age. 
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Age 
(days) 

Rel Egg 
Mass 

Age 
(days) 

Rel Egg 
Mass 

Age 
(days) 

Rel Egg 
Mass 

0.9 0.99 62.9 2.02 100.3 1.85 
1.8 0.99 55.9 1.85 109.8 2.15 
1.8 1.01 60.8 1.7 118.3 2.04 
3.3 1.09 84.5 1.63 121.6 2.21 
5.2 1.18 84.2 1.73 121.3 2.14 
9.4 1.32 77.5 1.72 128.3 2.17 

16.1 1.81 82.7 2.1 146.6 2.25 
17.6 1.69 83.9 2.05 167.5 2.22 
20.7 1.69 85.7 2.04 136.5 2.1 
22.5 1.65 83.9 1.98 127.4 1.9 
24.3 1.56 97.6 2.3 134.4 1.99 
19.2 1.52 100.6 2.25 141.4 1.97 
35 1.83 95.5 2.11 134.4 1.82 
48 1.98 101.9 2.16 176 1.82 

62.9 2.09 104.9 2.07   
 
 

 
One’s first impression might be that the data seems to fit a square root sort of function.  
However, after fitting ',  where ' ,y a bx x x= + =  the residual plot exhibits an excessive 
amount of curvature.  Still, the square root transformation seems reasonable.  Perhaps a 
different power relationship will provide a better fit.  The transformations to make this fit 
are: ' ln( ) and ' ln( )x x y y= = .  Now, fitting ' ln( ')y a x= +  (using natural logs this time) 
we see… 
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A closer look (with the aid of software!) reveals that there might be a problem with some 
high leverage points at the lower ages, but the points are very close to the best fit line, 
and in fact they are not overly influential in determining the fit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose now that you have graduated from investigating chameleon eggs, and are now in 
Alaska, working with Mark McNay and his colleagues preparing a research report, 
“Diagnosing pregnancy, In Utero Litter Size, and Fetal Growth with Ultrasound in Wild, 
Free-Ranging Wolves.”  (Journal of Mammalogy [2006]:85-92).   
 
Did you get that part about Wild, Free-
Ranging?   Just so you know, here is what they 
look like when they are Wild and Free-Ranging 
and imagining you on a big plate.  That’s why 
one shoots darts loaded with 550 mg of 
tiletamine HCl and zolazepam HCl (available at 
Fort Dodge Lab, Fort Dodge, IOWA) at them 
from the safety of a helicopter.  Data on the 
fetal crown-rump length (distance from top of 
head to bottom of buttocks) in cm vs. fetal 
gestational age are shown below. 
 
 

Gestational Age CRL Gestational Age CRL 
25 0.814 34.011 2.533 

28.004 1.266 35.989 4.432 
29.03 1.598 36.977 4.583 

31.008 1.447 38.004 4.342 
32.985 2.623 38.004 2.834 
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An initial plot of the data as well as theoretical biological considerations suggest that the 
actual relation between the crown rump length and gestational age is exponential, i.e. 

bxy ae= .  
 
 
 
 
 
 
 
 
 
 
 
 
Transforming the response variable with a logarithm gives us a best fit line, ln y a bx= + , 

which in this case turns out to be: ln( ) ( )CRL a b GA= + .  The scatter plot and residual 
plot are presented below.   (The transformation does not produce much change because 
the curvature was slight.) 
 

 
 
Choosing a fit: combining the Best and the Brightest 
 
Once we reject the straight line as a plausible description of data, it is frequently the case 
that more than one of our polynomial or transformation strategies will produce a good fit 
to the data we have.  Choosing a nonlinear regression procedure is a matter of statistical 
judgment guided by scientific wisdom.   As scientists interested in explanation, we want 
to feel we have provided as complete an explanation, as maximal an accounting of the 
variability in y, as possible.  This can sometimes translate into a ruthless search for a 
procedure – any procedure! – that has, as a result, small residuals and a large 2r .  
 
Unfortunately, there is a quick and easy (and wrong) way to do this by abusing 
polynomials!   
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Holding out for a hero: polynomials!?!? 
 
Polynomials are among the most useful and powerful functions in applied mathematics.  
Archimedes of Syracuse (287 – 212 BCE) is reported to have said that if he had a lever 
long enough and a fulcrum to use he could move the Earth.  In the mathematical area of 
numerical analysis, it is well known that given a polynomial of high enough degree, any 
sufficiently tame function (i.e. differentiable) can be approximated to any desired 
accuracy using a polynomial.  The higher the degree of the polynomial, the better the fit.  
However, in regression analysis this numerical analysis tool is more akin to the deus ex 
machina of Greek drama.  (That is, a plot device whereby a seemingly unsolvable 
problem is suddenly and abruptly resolved by the inspired and unexpected intervention of 
some new event, character, ability or object.  Thank you, Google!) 
 
In regression analysis, it turns out that fits can be improved by the simple artifice of 
increasing the degree of the polynomial beyond the straight line (degree = 1) polynomial 
fit, ŷ a bx= + , to quadratics, cubics, quartics, quintics, and beyond.  While this strategy 
may give a “best” fit, it will not in general give the “brightest” fit.  My meaning of 
“brightest fit” here is the fit that mirrors the underlying physical, chemical, biological, 
psychological, etc. relationship or process under investigation.  Only very rarely would a 
relationship be a polynomial beyond quadratic degree.  (The one we saw above is the first 
one seen in 30 years of looking!)  Bottom line: if you are seeking explanation or 
understanding – as distinguished from mere prediction – high degree polynomials seldom 
if ever rise to the level of good nonsense!  To illustrate and hopefully engender future 
rejection of the siren song of higher degree polynomials, please consider an experiment 
the subject of which was the relationship between blood flow and blood pressure in rats.  
[Carreira, et al.  (2014).  Diaphragmatic function is preserved during severe hemorrhagic 
shock in the rat.  Anesthesiology 120:425-35.]   The linear fit and associated residual plot 
are shown below, using the way cool capabilities of the JMP statistics program. 
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For the linear fit 2 0.518148r =  (all those decimals just show our sense of humor, but 
bear with me here), and the plots indicate the presence of curvature.  Suppose now a data 
analyst decides to ruthlessly pursue a larger 2r  (technically now, a larger 2R ) by fitting 
higher and higher degree polynomials.   Here are polynomial fits up to sixth degree, using 
JMP: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice the [alleged] Good, the Bad, and the Ugly:   
 
 [alleged] Good:  
The 2r  increases with the degree of the polynomial. 
 
Bad:   
 
 Outside the range of experimental values of mean 
arterial pressures, the polynomials seriously disagree 
about the nature of the relationship, and thus it is difficult to believe that this class of 
functions has captured the nature of the relationship between blood flow and blood 
pressure. 
 
Ugly:     
 
How would one possibly interpret the polynomial coefficients??? 
 

Degree of 
polynomial 

2r  

1 0.518148 
2 0.551057 
3 0.551284 
4 0.554082 
5 0.568641 
6 0.569111 
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Sal Density vs. Rock Density 

Carreira,  et al.  explained their results in the extraordinarily opaque (to this writer) doctor 
lingo, but suggested a very simple explanatory nonlinear relation: 
 

 ( )
MAP = mean arterial pressure

lnBloodFlow MAPα β ε= + +
 

The associated differential equation indicates this elementary and easily interpretable 

simplicity: dF k
dP P

=  .   Here is their plot of the data – notice also the respectable 2r : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The message here is that while increasing the degree of a polynomial increases the 
proportion of variability (allegedly) "explained by” the polynomial, higher degrees do not 
result in a better understanding of the underlying relation or process under investigation.  
The increase in 2 2r R is a numerical chimerical illusion. 
 
 
Holding out for a hero: the scientific received view 
 
Picking the “Brightest” fit – the one in agreement with 
accepted scientific laws – would usually be the preferred 
strategy.    
 
Frequently, regression is used in the tentative creation of 
scientific laws. In cases such as these an investigator may 
reason from her knowledge of science and be able to 
reject some possible nonlinear functions in favor of 
others.   We found an interesting example of scientific 
judgment in an experimental study of factors that 
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SDensity vs. 1/RDensity 

 
Residual Plot 

 
Original scale 

 
 

influence population density of salamanders in the paper, 
“The relationship between rock density and salamander 
density in a mountain stream” (Herpetologica [1987]: 
357-361).  The investigators created a range of habitats 
for salamanders (Desmognathus quadramaculatus) by 
placing different sized rocks and pebbles in a small stream 
in the Southern Appalachian Mountains.  Three months 
later they returned to measure the population density of 
the salamanders.  The scatterplot of their original data are 
shown at right.  The densities are measured in count / 1.4 
square meters.   
 
Inspection of the potential elementary functions suggests 
more than one plausible function to use to fit the data.  The 
researchers chose a reciprocal regression  
 

function, 1ˆ ,y a b
x

 = +  
 

 for two reasons: (1) it was the  

best, and (2) it was the brightest.  The 2r was greatest for 
the reciprocal function, which was icing on the cake.   
More important, the reciprocal function made sense 
scientifically.  The investigators felt that there would be an 
upper limit to the population density since the stream bed 
is a nonrenewable resource and the stream therefore had a 
limit in the number of salamanders that could be sustained.   
 
This limit is known as the “carrying capacity” of an 
environment and is estimated by the value of the intercept, 
a, in the regression function.   The choice of a reciprocal 
transformation may seem odd to you because the 
reciprocal transformation shown above is the only one that 
is falling with increasing x values.  Remember, though, 
that functions are transformed into mirror images 
by ( )f x−  and ( )f x− .  
 
 
 
 
 After defining the transformation 1'x x= and fitting the resulting data, the best fit line 

was calculated using JMP.  The best fit line, ( 2ˆ 12.37 292.6 ',  0.82y x r= − = ) and the 
residual plot are shown above.   The scatterplot of the original (untransformed) data with 
the best fit regression equation superimposed is shown at right. 
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Here is an example of a nonlinear fit, this one in the absence of settled scientific theory, 
from the article in “Sea-Level Rise on Eastern China’s Yangtze Delta” (Journal of 
Coastal Research [1998]: 360-366). 
 
The researchers used pollen and microfossil records in radiocarbon-dated samples of peat 
from core samples as well as archeological data to produce historic water levels in the 
Yangtze delta of China to study the pattern of the rising of sea level.   Geologic and 
hydrologic data are notorious for not having the benefit of common scientific models (i.e. 
there is no Brightest), and the researchers elected to fit an exponential model to their data 
as the Best summary of the relation between sea-level and time.  Their data are 
reproduced in the table below and are relative to the present sea-level and present time.  
The variable “Kilo-Years BP” is thousands of years before the present; the depth variable 
is the depth compared to the current sea level.  As an example, based on the 
measurements available the researchers inferred that 7,064 years ago the sea-level was 
3.2 meters below the current level.  The “Log of Depth” is the common (base 10) 
logarithm of the Depth.     A scatterplot of the Depth vs. Kilo-Years BP with a fitted 
exponential function is shown. 
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Sea-level vs. time 

 
 

 
 

Kilo- 
years 
BP 

Depth 
(m) 

Log of 
Depth 

Kilo-
Years 

BP 

Depth 
(m) 

Log of 
Depth 

Kilo-
Years 

BP 

Depth 
(m) 

Log of 
Depth 

7.064 3.2 0.5051 5.930 3.0 0.4771 4.660 1.0 0.0000 

6.680 4.0 0.6021 5.845 2.6 0.4150 4.470 1.2 0.0792 

6.670 3.8 0.5798 5.845 3.0 0.4771 4.000 2.2 0.3424 

6.670 3.5 0.5441 5.790 5.1 0.7076 3.950 3.0 0.4771 

6.600 2.8 0.4472 5.780 2.5 0.3979 3.407 1.0 0.0000 

6.580 2.0 0.3010 5.640 3.6 0.5563 2.950 3.6 0.5563 

6.510 4.1 0.6128 5.600 2.5 0.3979 2.720 1.6 0.2041 

6.500 5.1 0.7076 5.530 5.7 0.7559 2.393 1.0 0.0000 

6.365 3.5 0.5441 5.530 2.0 0.3010 2.285 0.9 -0.0458 

6.275 1.5 0.1761 5.470 1.0 0.0000 2.180 1.0 0.0000 

6.227 2.5 0.3979 5.260 3.0 0.4771 1.790 2.3 0.3617 

6.008 6.0 0.7782 5.260 1.8 0.2553 1.780 1.7 0.2304 

6.000 2.5 0.3979 5.210 2.1 0.3222 1.691 1.5 0.1761 

6.000 3.0 0.4771 4.901 2.1 0.3222 1.530 1.1 0.0414 

5.960 5.0 0.6990 4.750 1.0 0.0000 1.510 0.7 -0.1549 
 
The scatterplot is typical of data seen when two 
variables are related by an exponential 
function.  The change in y for increasing values 
of x is less for small x values than for large 
values of x.  For these data, think in changes in 
x of units of 1000 years.  Another feature 
common to exponential relations is that the 
variability about the line is greater for larger 
values of x than it is for smaller values of x.   
 
The plot of sea level vs. time hints that using 
logarithms and transforming the y variable (the 
depth) will be in order.  Two standard 
logarithmic functions are commonly used for 
such transformations – the common logarithm 
(log base 10, denoted by log or 10log ) and the 
natural logarithm (log base e, usually denoted by ln, but sometimes as loge ). Either the 
common or natural log can be used; the only difference in the resulting scatterplots is the 
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' ln( )y x=  

 

scale of the transformed y variable.  This can be seen below where the scatterplots of 
'  vs. y x for both logarithmic transformations are shown, together with the best fit lines.  

These two scatterplots show the same pattern. 
 
The resulting regression equations using the common log transformation are 
' 0.093 0.0915y K= − + , or equivalently, log( ) 0.093 0.0915y K= − + .   For the natural log 

transformation the resulting regression equation is ' 0.215 0.2106y K= − + , or 

equivalently ln( ) 0.215 0.2106y K= − + . 
 

 
Recovering a curve after using transformations 
 
The objective of a regression analysis is usually to describe the approximate relationship 
between x and y with an equation of the form y = some function of x.  If we have 
transformed only x, fitting a least-squares line to the transformed data results in an 
equation of the desired form, for example, 
 
       ˆ 5 3 ' 5 3 ,  where 'y x x x x= + = + =  
               or 

      1 1ˆ 4 0.2 ' 4 0.2 ,  where 'y x x
x x

= + = + = . 

 
These functions specify lines when graphed using y vs. 'x , and they specify curves when 
graphed using y vs. x. 
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If the y values have been transformed, after obtaining the least-squares line the 
transformation can be "back transformed"  to yield an expression of the form y = some 
function of x (as opposed to 'y = some function of x).  For example, to reverse a 

logarithmic transformation ( ' log( )y y= ), we can take the antilogarithm of each side of 

the equation.  To reverse a square root transformation ( 'y y= ), we can square both 

sides of the equation, and to reverse a reciprocal transformation (  1'y
y

= ), we can take the 

reciprocal of each side of the equation. 
 
For the common log transformation used with the sea-level data,  ( )' logy y=  and the 

least-squares line relating 'y and x was ' 0.093 0.0915y K= − + or equivalently, 

( )log 0.093 0.0915y K= − + .  To reverse this transformation, we take the antilog of both 
sides of the equation: 
 
  ( )log 0.093 0.091510 10y K− +=  
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Using properties of logs and exponents we know that 
 
 ( )log10 y y=   and  ( )( )0.093 0.0915 0.093 0.091510 10 10K K− + −=  
 
Finally we get  
 
 ( )( ) ( ) ( )0.093 0.0915 0.0915ˆ 10 10 0.8072 10 0.8072 1.233 KK Ky −= = =  
 
This equation can now be used to predict the y value (sea-level) for a given x (thousands 
of years ago).  For example, the predicted sea-level 2500 years ago (K = 2.5) is: 
 

( ) ( ) ( )( )ˆ 0.8072 1.233 0.8072 1.233 0.8072 1.6934 1.3669K Ky = = = =  
 
 

A final warning about “back transformations” 
 
The process of transforming data, fitting a line to the transformed data, and then undoing 
the transformation to get an equation for a curved relationship between x and y usually 
results in a curve that provides a reasonable fit to the sample data, but it is not the least-
squares curve for the data.  For example, we used a transformation to fit the curve 

( )( )0.093ˆ 10 1.233 Ky −=  above.  However, there may be another equation of the form 

( )ˆ 10 bxy a=  that has a smaller sum of squared residuals for the original data than the one 
obtained using transformations.  Finding the least-squares estimates for a and b in an 
equation of this form is mathematically complicated.  Fortunately, the curves found using 
transformations usually provide reasonable predictions of y even in the original scales.  
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