

Chapter 4: Numerical Methods for Distributions of Data

Interpreting Center \& Variability in a Distribution
Adapted from Statistics and Data Analysis, $5^{\text {th }}$ edition - For AP* PECK, OLSEN, \& DEVORE

Oct 17, 2022: Warm - UP

1) Given a fairly symmetric distribution that has a mean of 100 and a standard deviation of 15 , what are the following z-scores:
A) for an observation that is 110
B) for an observation that is 85
C) for an observation that is 142
2) Using the information from the problem above, what is the value of the observation that has a z-score:
a) $z=-2$; b) $z=1.58$

Oct. 2022: Warm-UP Answers

1) Given a fairly symmetric distribution that has a mean of 100 and a standard deviation of 15 , what are the following z-scores:

$$
\text { z score }=\frac{x-\text { mean }}{\text { standard deviation }}
$$

A) for an observation that is $110110-100$

$$
z \text { score }=\frac{110-100}{15}=0.667
$$

B) for an observation that is 85
C) for an observation that is 142

$$
z \text { score }=\frac{85-100}{15}=-1.0
$$

$$
z \text { score }=\frac{142-100}{15}=2.8
$$

Nov. 2021: Warm-UP Answers

2) Using the information from the problem above, what is the value of the observation that has a z-score: a) \quad z score $=-2$

$$
-2=\frac{x-100}{15} \quad \begin{gathered}
-30=x-100 \\
\therefore x=70
\end{gathered}
$$

b) z score $=1.58$

$$
1.58=\frac{x-100}{15} \quad \begin{gathered}
23.7=x-100 \\
\therefore x=123.7
\end{gathered}
$$

Standard normal Table

Table entry for z is the probability lying below z.

What percentile is a z-score of -1.85 ?

Table A Standard normal probabilities

a z-score of
$-1.85=0.0322$
So about 3.2\% or
$3^{\text {rd }}$ percentile

Standard normal Table

Table entry for z is the probability lying below z.

What percentile is a z-score of -2.31?

Table A Standard normal probabilities

z	. 00	(.01)	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.4	. 0003	.0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	. 0005	. 0005	. 0005	. 0004	. 0004	. 0004	. 0004	. 0004	. 0004	. 0003
-3.2	. 0007	. 00007	. 0006	. 0006	. 0006	. 0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	. 0009	. 0009	. 0008	. 0008	. 0008	. 0008	. 0007	. 0007
-3.0	. 0013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 0010
-2.9	. 0019	. 0018	. 0018	. 0017	. 0016	. 0016	. 0015	. 0015	. 0014	. 0014
-2.8	. 0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	. 0021	. 0020	. 0019
-2.7	. 0035	. 0034	. 0033	. 0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	. 0059	. 0057	. 0055	. 0054	. 0052	. 0051	. 0049	. 0048
	.0002		.0078	0075	.0073	.0071	0069	.0068	.0065	. 0064
-2.3	. 0107	0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	. 0084
-20	. 0139	- 8010	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	. 0274	. 0268	. 0262	. 0256	. 0250	. 0244	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 0401	. 0392	. 0384	. 0375	. 0367
-1.6	. 0548	. 0537	. 0526	. 0516	. 0505	. 0495	. 0485	. 0475	. 0465	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	. 0618	. 0606	. 0594	. 0582	. 0571	. 0559
-1.4	. 0808	. 0793	. 0778	. 0764	. 0749	. 0735	. 0721	. 0708	. 0694	. 0681
-1.3	. 0968	. 0951	. 0934	. 0918	. 0901	. 0885	. 0869	. 0853	. 0838	. 0823
-1.2	. 1151	. 1131	.1112	. 1093	. 1075	. 1056	. 1038	. 1020	. 1003	. 0985
-11	1357	1325	1314	1797	1771	1251	1230	1710	1190	1170

> a z-score of
> $-2.31=0.0104$
> So about
> 1\%
> $1^{\text {st }}$ percentile

Standard normal Table Finding the z-score

Table A (Continued)

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. $52 / 9$. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
\bigcirc	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
-0.1	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
		. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
What percentile is		. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
What oercentile is		. 8438	. 8461	. 8485	. 8508	8531	. 8554	. 8577	. 8599	. 8621
		. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
equal to a z-score		. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
of 0.67?		. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.6	$\begin{aligned} & .7052 \\ & .9452 \end{aligned}$	The	ret	$) \mid$	$1,$	nk	ed	Vith	e	St
1.7	. 9554	row gives you the z-score to the second								
1.8 1.9	.9641 .9713									
2.0	. 9772	decimal place								
2.1	. 9821									
2.2	. 9861	->ou-	.7000	.70\%1	.7010	-70\%	.7001	.700*	-700\%	-70>0
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	9989	. 9989	. 9989	. 9990	. 9990

Standard normal Table
 Finding the percentile = z-score

The Standard Normal Table

Because all Normal distributions are the same when we standardize, we can find areas under any Normal curve from a single table.

Definition: The Standard Normal Table

Table A is a table of areas under the standard Normal curve. The table entry for each value z is the area under the curve to the left of z.

Suppose we want to find the proportion of observations from the standard Normal distribution that are less than 0.81 .
We can use Z table (z^{*}):

\boldsymbol{Z}	.00	. $\mathbf{0}^{+}$.02
$\mathbf{0 . 7}$.7580	.7	.7642
$\mathbf{0 . 8}$.7881	.7910	.7939
$\mathbf{0 . 9}$.8159	.8186	.8212

$\mathrm{P}(\mathrm{z}<0.81)=.7910$

Z-score WS practice: $z=\frac{\text { obsev.-mean }}{S . D .}$

1. A normal distribution of scores has a standard deviation of 10 . Find the z -scores corresponding to each of the following values:
a) A score that is 20 points above the mean.
b) A score that is 10 points below the mean.
c) A score that is 15 points above the mean
d) A score that is 30 points below the mean.

Z-score WS practice: $z=\frac{\text { obsev.-mean }}{S . D .}$

The Welcher Adult Intelligence Test Scale is composed of a number of subtests. On one subtest, the raw scores have a mean of 35 and a standard deviation of 6. Assuming these raw scores form a normal distribution:
a) What number represents the $65^{\text {th }}$ percentile (what number separates the lower 65% of the distribution)?

Percentile Quartile z-score
$65^{\text {th }}$

Finding Areas Under the Standard Normal Curve
Find the proportion of observations from the standard Normal distribution that are between -1.25 and 0.81 .

Example

Finding Areas Under the Standard Normal Curve

Find the proportion of observations from the standard Normal distribution that are between -1.25 and 0.81 .


```
Area to left of
\(z=-1.25\) is 0.1056 .
```

-

Area between $z=-1.25$ and $z=0.81$ is $0.7910-0.1056=0.6854$.

Can you find the same proportion using a different approach?

$$
\begin{aligned}
& 1-(0.1056+0.2090)= \\
& 1-0.3146=0.6854
\end{aligned}
$$

Normal Distribution Calculations

How to Solve Problems Involving Normal Distributions

State: Express the problem in terms of the observed variable x.
Plan: Draw a picture of the distribution and shade the area of interest under the curve.

Do: Perform calculations.
-Standardize x to restate the problem in terms of a standard Normal variable z.

- Use Standard Table and the fact that the total area under the curve is 1 to find the required area under the standard Normal curve.

Conclude: Write your conclusion in the context of the problem.

Normal Distribution Calculations

When Tiger Woods hits his driver, the distance the ball travels can be described by $N(304,8)$. What percent of Tiger's drives travel between 305 and 325 yards?

Using Table A, we can find the area to the left of $z=2.63$ and the area to the left of $z=0.13$. $0.9957-0.5517=0.4440$. About 44\% of Tiger's drives travel between 305 and 325 yards.

Assessing Normality

The Normal distributions provide good models for some distributions of real data. Many statistical inference procedures are based on the assumption that the population is approximately Normally distributed. Consequently, we need a strategy for assessing Normality.
\checkmark Plot the data.
-Make a dotplot, stemplot, or histogram and see if the graph is approximately symmetric and bell-shaped.
\checkmark Check whether the data follow the 68-95-99.7 rule.
-Count how many observations fall within one, two, and three standard deviations of the mean and check to see if these percents are close to the $68 \%, 95 \%$, and 99.7% targets for a Normal distribution.

Section 4.5 Normal Distributions

Summary

In this section, we learned that...
\checkmark The Normal Distributions are described by a special family of bellshaped, symmetric density curves called Normal curves. The mean μ and standard deviation σ completely specify a Normal distribution $N(\mu, \sigma)$. The mean is the center of the curve, and σ is the distance from μ to the change-of-curvature points on either side.
\checkmark All Normal distributions obey the 68-95-99.7 Rule, which describes what percent of observations lie within one, two, and three standard deviations of the mean.

